125 research outputs found
Tagger design optimization
This note presents the simulations and tests performed at LPSC Grenoble for the optimization of the DVCS tagger paddles. The choice of the wrapping material and the addition of a light guide with a specific triangular cut are discussed and confronted to experimental measurements. This study led to the final configuration of the DVCS tagger
Production of highly-polarized positrons using polarized electrons at MeV energies
The Polarized Electrons for Polarized Positrons experiment at the injector of
the Continuous Electron Beam Accelerator Facility has demonstrated for the
first time the efficient transfer of polarization from electrons to positrons
produced by the polarized bremsstrahlung radiation induced by a polarized
electron beam in a high- target. Positron polarization up to 82\% have been
measured for an initial electron beam momentum of 8.19~MeV/, limited only by
the electron beam polarization. This technique extends polarized positron
capabilities from GeV to MeV electron beams, and opens access to polarized
positron beam physics to a wide community.Comment: 5 pages, 4 figure
Theoretical approach based on Monte-Carlo simulations to predict the cell survival following BNCT
International audienceWe present here a very preliminary work on BNCT Dosimetry. The approach is as follows:A full Monte Carlo calculation is used to separate all dose components and determine the corresponding physical dose fractions with a realistic clinical model.These dose fractions are then used as mixed fields to predict cell-survivals and RBE values for a specific cell-line, thanks to the radiobiological model NanOxTM
Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework
Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes
Performance of prototypes for the ALICE electromagnetic calorimeter
The performance of prototypes for the ALICE electromagnetic sampling
calorimeter has been studied in test beam measurements at FNAL and CERN. A
array of final design modules showed an energy resolution of about
11% / 1.7 % with a uniformity of the response
to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV.
The electromagnetic shower position resolution was found to be described by 1.5
mm 5.3 mm /. For an electron identification
efficiency of 90% a hadron rejection factor of was obtained.Comment: 10 pages, 10 figure
Exploring light dark matter with the DarkSPHERE spherical proportional counter electroformed underground at the Boulby Underground Laboratory
We present the conceptual design and the physics potential of DarkSPHERE, a
proposed 3 m in diameter spherical proportional counter electroformed
underground at the Boulby Underground Laboratory. This effort builds on the R&D
performed and experience acquired by the NEWS-G Collaboration. DarkSPHERE is
primarily designed to search for nuclear recoils from light dark matter in the
0.05--10 GeV mass range. Electroforming the spherical shell and the
implementation of a shield based on pure water ensures a background level below
0.01 dru. These, combined with the proposed helium-isobutane gas mixture, will
provide sensitivity to the spin-independent nucleon cross-section of cm for a dark matter mass of GeV.
The use of a hydrogen-rich gas mixture with a natural abundance of C
provides sensitivity to spin-dependent nucleon cross-sections more than two
orders of magnitude below existing constraints for dark matter lighter than 1
GeV. The characteristics of the detector also make it suitable for searches of
other dark matter signatures, including scattering of MeV-scale dark matter
with electrons, and super-heavy dark matter with masses around the Planck scale
that leave extended ionisation tracks in the detector.Comment: 19 pages, 14 figure
Progress in Diamond Detector Development
Detectors based on Chemical Vapor Deposition (CVD) diamond have been used successfully in Luminosity and Beam Condition Monitors (BCM) in the highest radiation areas of the LHC. Future experiments at CERN will accumulate an order of magnitude larger fluence. As a result, an enormous effort is underway to identify detector materials that can operate under fluences of 1 · 1016 n cmâ2 and 1 · 1017 n cmâ2. Diamond is one candidate due to its large displacement energy that enhances its radiation tolerance. Over the last 30 years the RD42 collaboration has constructed diamond detectors in CVD diamond with a planar geometry and with a 3D geometry to extend the material's radiation tolerance. The 3D cells in these detectors have a size of 50 ”mĂ50 ”m with columns of 2.6 ”m in diameter and 100 ”mĂ150 ”m with columns of 4.6 ”m in diameter. Here we present the latest beam test results from planar and 3D diamond pixel detectors
- âŠ