134 research outputs found

    Balsac – Prieuré du Sauvage

    Get PDF
    Lien Atlas (MCC) :http://atlas.patrimoines.culture.fr/atlas/trunk/index.php?ap_theme=DOM_2.01.02&ap_bbox=2.427;44.377;2.491;44.426 L'association des Amis du prieuré du Sauvage s’emploie depuis les années 90 à mettre en valeur ce site grandmontain redécouvert tardivement. La surveillance archéologique du chantier, inscrite dans le cadre de la mission régionale de suivi de travaux sur monuments historiques, a été reconduite en 2013. Elle visait principalement à vérifier que les terrassements et..

    Ультрадисперсные порошки на основе железа как катализаторы синтеза жидких углеводородов из СО и Н[2]

    Get PDF
    International audienceTo date, uniparental disomy (UPD) with phenotypic relevance is described for different chromosomes and it is likely that additional as yet unidentified UPD phenotypes exist. Due to technical difficulties and limitations of time and resources, molecular analyses for UPD using microsatellite markers are only performed in cases with specific phenotypic features. In this study, we carried out a whole genome UPD screening based on a microarray genotyping technique. Six patients with the diagnosis of both complete or segmental UPD including Prader-Willi syndrome (PWS; matUPD15), Angelman syndrome (AS; patUPD15), Silver-Russell syndrome (SRS; matUPD7), Beckwith-Wiedemann syndrome (BWS; patUPD11p), pseudohypoparathyroidism (PHP; patUPD20q) and a rare chromosomal rearrangement (patUPD2p, matUPD2q), were genotyped using the GeneChip Human Mapping 10K Array. Our results demonstrate the presence of UPD in the patients with high efficiency and reveal clues about the mechanisms of UPD formation. We thus conclude that array based SNP genotyping is a fast, cost-effective, and reliable approach for whole genome UPD screening

    Vitamin-D binding protein gene polymorphisms and serum 25-hydroxyvitamin-D in a Turkish population

    Get PDF
    The rs7041 and rs4588 polymorphisms found in the GC gene, encoding vitamin D-binding protein (DBP), have distinct biochemical phenotypes. The aim of this study was to investigate vitamin D parameters with these polymorphisms, in individuals with possible vitamin D deficiency. The most common (49% of the cohort) genotype in rs7041 was GT, especially among individuals with high levels of free 25(OH)D calculated but with low levels of bioavailable 25(OH)D, and in rs4588 it was AC in particular among the individuals with low levels of bioavailable 25(OH)D. The most common phenotypes were Gc1s/2 (35.3%) and Gc1s/1s (31.4%), and Gc1f/1f was rare (5.9%). The variations in free and bioavailable 25(OH)D levels among healthy Turkish individuals may be attributed to the variations in total 25(OH)D as well as GC gene polymorphisms. The Turkish population shares a similarity for allele frequencies of rs7041 with the European population and similarity for allele frequencies of rs4588 with Gujarati Indians, and this may also be important in relation to certain ethnic populations showing associations between vitamin D and COVID-19

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3 and reports on four research projects.California Institute of Technology/Jet Propulsion Laboratory Agreement 959548National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Agreement 958461U.S. Navy - Office of Naval Research Grant N00014-89-J-1107U.S. Navy - Office of Naval Research Grant N00014-92-J-1616U.S. Navy - Office of Naval Research Grant N00014-92-J-4098Digital Equipment CorporationJoint Services Electronics Program Contract DAAL03-92-C-0001U.S. Navy - Office of Naval Research Agreement N00014-90-J-1002U.S. Navy - Office of Naval Research Agreement N00014-89-J-1019DEMACOU.S. Army Cold Regions Research and Engineering Laboratory Contract DACA89-93-K-0009U.S. Department of Transportation Agreement DTRS-57-92-C-00054TTD1Advanced Research Projects Agency/Consortium for Superconducting Electronics Contract MDA972-90-C-0021National Science Foundation Fellowship MIP 88-58764National Science Foundatio

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on four research projects and a list of publications.National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Agreement 958461National Aeronautics and Space Administration Grant NAGW-1272U.S. Army Corp of Engineers Contract DACA39-87-K-0022U.S. Navy - Office of Naval Research Grant N00014-89-J-1107U.S. Navy - Office of Naval Research Grant N00014-92-J-1616Digital Equipment CorporationJoint Services Electronics Program Contract DAAL03-92-C-0001U.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Navy - Office of Naval Research Grant N00014-89-J-1019U.S. Department of Transportation Agreement DTRS-57-88-C-00078TTD13U.S. Department of Transportation Agreement DTRS-57-88-C-00078TTD30U.S. Department of Transportation Agreement DTRS-57-92-C-00054TTD1DARPA/Consortium for Superconducting Electronics Contract MDA972-90-C-0021National Science Foundation Fellowship MIP 88-5876

    Impact of Cerebral Microbleeds in Stroke Patients with Atrial Fibrillation

    Get PDF
    OBJECTIVES: Cerebral microbleeds are associated with the risks of ischemic stroke and intracranial hemorrhage, causing clinical dilemmas for antithrombotic treatment decisions. We aimed to evaluate the risks of intracranial hemorrhage and ischemic stroke associated with microbleeds in patients with atrial fibrillation treated with Vitamin K antagonists, direct oral anticoagulants, antiplatelets, and combination therapy (i.e. concurrent oral anticoagulant and antiplatelet) METHODS: We included patients with documented atrial fibrillation from the pooled individual patient data analysis by the Microbleeds International Collaborative Network. Risks of subsequent intracranial hemorrhage and ischemic stroke were compared between patients with and without microbleeds, stratified by antithrombotic use. RESULTS: A total of 7,839 patients were included. The presence of microbleeds was associated with an increased relative risk of intracranial hemorrhage (aHR 2.74, 95% confidence interval 1.76 - 4.26) and ischemic stroke (aHR 1.29, 95% confidence interval 1.04 - 1.59). For the entire cohort, the absolute incidence of ischemic stroke was higher than intracranial hemorrhage regardless of microbleeds burden. However, for the subgroup of patients taking combination of anticoagulant and antiplatelet therapy, the absolute risk of intracranial hemorrhage exceeded that of ischemic stroke in those with 2-4 microbleeds (25 vs 12 per 1,000 patient-years) and ≥11 microbleeds (94 vs 48 per 1,000 patient-years). INTERPRETATION: Patients with atrial fibrillation and high burden of microbleeds receiving combination therapy have a tendency of higher rate of intracranial hemorrhage than ischemic stroke, with potential for net harm. Further studies are needed to help optimize stroke preventive strategies in this high-risk group. This article is protected by copyright. All rights reserved

    Sex Differences in Frequency, Severity, and Distribution of Cerebral Microbleeds

    Get PDF

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
    corecore