19,042 research outputs found
Antimitotic action of cornin as a biologically active polypeptide. I. Biochemical properties of cornin
We succeeded in the extraction of a substance from beef cornea and rabbit muscle, that markedly inhibits mitosis of sea urchin eggs. The substance extracted from beef cornea is non-dialysable and it can be separated into three fractions by DEAE-cellulose column. Although everyone of these fractions has an antimitotic
action, that of fractions II and III is especially marked. These fractions are one of nucleoproteins that have adenine as base. The substance extracted from rabbit muscle is dialysable, and when it is fractionated through DEAE-cellulose column into three fractions, fraction I has no antimitotic effect but fractions II and III have it. Fraction II is one of nucleoproteins that have hypoxanthine
as base. Carnin obtained from beef cornea or from rabbit muscle shows a typical protein wave, but after being treated with gas by passing oxygen through cornin solution the wave height is lowered. Carnin, however, is a very
stable substance when kept dry in a desiccator.</p
Feynman loops and three-dimensional quantum gravity
This paper explores the idea that within the framework of three-dimensional
quantum gravity one can extend the notion of Feynman diagram to include the
coupling of the particles in the diagram with quantum gravity. The paper
concentrates on the non-trivial part of the gravitational response, which is to
the large momenta propagating around a closed loop. By taking a limiting case
one can give a simple geometric description of this gravitational response.
This is calculated in detail for the example of a closed Feynman loop in the
form of a trefoil knot. The results show that when the magnitude of the
momentum passes a certain threshold value, non-trivial gravitational
configurations of the knot play an important role.
The calculations also provide some new information about a limit of the
coloured Jones polynomial which may be of independent mathematical interest.Comment: approx 14 pages. v2: minor descriptive changes and added refs. v3:
minor correction
SL(2,C) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial
We clarify and refine the relation between the asymptotic behavior of the
colored Jones polynomial and Chern-Simons gauge theory with complex gauge group
SL(2,C). The precise comparison requires a careful understanding of some
delicate issues, such as normalization of the colored Jones polynomial and the
choice of polarization in Chern-Simons theory. Addressing these issues allows
us to go beyond the volume conjecture and to verify some predictions for the
behavior of the subleading terms in the asymptotic expansion of the colored
Jones polynomial.Comment: 15 pages, 7 figure
The solar wind effect on cosmic rays and solar activity
The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity
Theory of "Jitter" Radiation from Small-Scale Random Magnetic Fields and Prompt Emission from Gamma-Ray Burst Shocks
Abridged.-- We demonstrate that the radiation emitted by ultrarelativistic
electrons in highly nonuniform, small-scale magnetic fields is different from
synchrotron radiation if the electron's transverse deflections in these fields
are much smaller than the beaming angle. A quantitative analytical theory of
this radiation, which we refer to as jitter radiation, is developed. It is
shown that the emergent spectrum is determined by statistical properties of the
magnetic field. As an example,we then use the model of a magnetic field in
internal shocks of GRBs. The spectral power distribution of radiation produced
by the power-law electrons is well described by a sharply broken power-law with
indices 1 and -(p-1)/2 and the jitter break frequency is independent of the
field strength but depends on the electron density in the ejecta. Since
large-scale fields may also be present in the ejecta, we construct a
two-component, jitter+synchrotron spectral model of the prompt -ray
emission. Quite surprisingly, this model seems to be readily capable of
explaining several properties of time-resolved spectra of some GRBs, such as
(i) the violation of the constraint on the low-energy spectral index called the
synchrotron ``line of death'', (ii) the sharp spectral break at the peak
frequency, inconsistent with the broad synchrotron bump, (iii) the evidence for
two spectral sub-components, and (iv) possible existence of emission features
called ``GRB lines''. We believe these facts strongly support both the
existence of small-scale magnetic fields and the proposed radiation mechanism
from GRB shocks. As an example, we use the composite model to analyze GRB
910503 which has two spectral peaks.Comment: 12 pages (emulateapj), 11 figures (EPS), ApJ, accepted. For related
work, see http://cfa-www.harvard.edu/~mmedved
UV and X-ray Spectral Lines of FeXXIII Ion for Plasma Diagnostics
We have calculated X-ray and UV spectra of Be-like Fe (FeXXIII) ion in
collisional-radiative model including all fine-structure transitions among the
2s^2, 2s2p, 2p^2, 2snl, and 2pnl levels where n=3 and 4, adopting data for the
collision strengths by Zhang & Sampson (1992) and by Sampson, Goett, & Clark
(1984). Some line intensity ratios can be used for the temperature diagnostics.
We show 5 ratios in UV region and 9 ratios in X-ray region as a function of
electron temperature and density at 0.3keV < T_e < 10keV and . The effect of cascade in these line ratios and in the level
population densities are discussed.Comment: LaTeX, 18 pages, 10 Postscript figures. To appear in Physica Script
Carbon stars in the IRTS survey
We have identified 139 cool carbon stars in the near-infrared
spectro-photometric survey of the InfraRed Telescope in Space (IRTS) from the
conspicuous presence of molecular absorption bands at 1.8, 3.1 and 3.8 microns.
Among them 14 are new, bright (K ~ 4.0-7.0), carbon stars. We find a trend
relating the 3.1 microns band strength to the K-L' color index, which is known
to correlate with mass-loss rate. This could be an effect of a relation between
the depth of the 3.1 microns feature and the degree of development of the
extended stellar atmosphere where dust starts to form.Comment: accepted by the PASP; December 7, 200
Magnetostrictive behaviour of thin superconducting disks
Flux-pinning-induced stress and strain distributions in a thin disk
superconductor in a perpendicular magnetic field is analyzed. We calculate the
body forces, solve the magneto-elastic problem and derive formulas for all
stress and strain components, including the magnetostriction . The
flux and current density profiles in the disk are assumed to follow the Bean
model. During a cycle of the applied field the maximum tensile stress is found
to occur approximately midway between the maximum field and the remanent state.
An effective relationship between this overall maximum stress and the peak
field is found.Comment: 8 pages, 6 figures, submitted to Supercond. Sci. Technol., Proceed.
of MEM03 in Kyot
- …