575 research outputs found
Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study
BACKGROUND: Family studies and heritability estimates provide evidence for a genetic contribution to variation in the human life span. METHODS:We conducted a genome wide association study (Affymetrix 100K SNP GeneChip) for longevity-related traits in a community-based sample. We report on 5 longevity and aging traits in up to 1345 Framingham Study participants from 330 families. Multivariable-adjusted residuals were computed using appropriate models (Cox proportional hazards, logistic, or linear regression) and the residuals from these models were used to test for association with qualifying SNPs (70, 987 autosomal SNPs with genotypic call rate [greater than or equal to]80%, minor allele frequency [greater than or equal to]10%, Hardy-Weinberg test p [greater than or equal to] 0.001).RESULTS:In family-based association test (FBAT) models, 8 SNPs in two regions approximately 500 kb apart on chromosome 1 (physical positions 73,091,610 and 73, 527,652) were associated with age at death (p-value < 10-5). The two sets of SNPs were in high linkage disequilibrium (minimum r2 = 0.58). The top 30 SNPs for generalized estimating equation (GEE) tests of association with age at death included rs10507486 (p = 0.0001) and rs4943794 (p = 0.0002), SNPs intronic to FOXO1A, a gene implicated in lifespan extension in animal models. FBAT models identified 7 SNPs and GEE models identified 9 SNPs associated with both age at death and morbidity-free survival at age 65 including rs2374983 near PON1.
In the analysis of selected candidate genes, SNP associations (FBAT or GEE p-value < 0.01) were identified for age at death in or near the following genes: FOXO1A, GAPDH, KL, LEPR, PON1, PSEN1, SOD2, and WRN. Top ranked SNP associations in the GEE model for age at natural menopause included rs6910534 (p = 0.00003) near FOXO3a and rs3751591 (p = 0.00006) in CYP19A1. Results of all longevity phenotype-genotype associations for all autosomal SNPs are web posted at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. CONCLUSION: Longevity and aging traits are associated with SNPs on the Affymetrix 100K GeneChip. None of the associations achieved genome-wide significance. These data generate hypotheses and serve as a resource for replication as more genes and biologic pathways are proposed as contributing to longevity and healthy aging
Recommended from our members
Genetic Correlates of Longevity and Selected Age-related Phenotypes: A Genome-wide Association Study in the Framingham Study
Background: Family studies and heritability estimates provide evidence for a genetic contribution to variation in the human life span. Methods: We conducted a genome wide association study (Affymetrix 100K SNP GeneChip) for longevity-related traits in a community-based sample. We report on 5 longevity and aging traits in up to 1345 Framingham Study participants from 330 families. Multivariable-adjusted residuals were computed using appropriate models (Cox proportional hazards, logistic, or linear regression) and the residuals from these models were used to test for association with qualifying SNPs (70, 987 autosomal SNPs with genotypic call rate ≥80%, minor allele frequency ≥10%, Hardy-Weinberg test p ≥ 0.001). Results: In family-based association test (FBAT) models, 8 SNPs in two regions approximately 500 kb apart on chromosome 1 (physical positions 73,091,610 and 73, 527,652) were associated with age at death (p-value < 10^-5). The two sets of SNPs were in high linkage disequilibrium (minimum r2 = 0.58). The top 30 SNPs for generalized estimating equation (GEE) tests of association with age at death included rs10507486 (p = 0.0001) and rs4943794 (p = 0.0002), SNPs intronic to FOXO1A, a gene implicated in lifespan extension in animal models. FBAT models identified 7 SNPs and GEE models identified 9 SNPs associated with both age at death and morbidity-free survival at age 65 including rs2374983 near PON1. In the analysis of selected candidate genes, SNP associations (FBAT or GEE p-value < 0.01) were identified for age at death in or near the following genes: FOXO1A, GAPDH, KL, LEPR, PON1, PSEN1, SOD2, and WRN. Top ranked SNP associations in the GEE model for age at natural menopause included rs6910534 (p = 0.00003) near FOXO3a and rs3751591 (p = 0.00006) in CYP19A1. Results of all longevity phenotype-genotype associations for all autosomal SNPs are web posted at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. Conclusion: Longevity and aging traits are associated with SNPs on the Affymetrix 100K GeneChip. None of the associations achieved genome-wide significance. These data generate hypotheses and serve as a resource for replication as more genes and biologic pathways are proposed as contributing to longevity and healthy aging
Association Between Frailty and Atrial Fibrillation in Older Adults: The Framingham Heart Study Offspring Cohort
Background: Frailty is associated bidirectionally with cardiovascular disease. However, the relations between frailty and atrial fibrillation (AF) have not been fully elucidated.
Methods and Results: Using the FHS (Framingham Heart Study) Offspring cohort, we sought to examine both the association between frailty (2005-2008) and incident AF through 2016 and the association between prevalent AF and frailty status (2011-2014). Frailty was defined using the Fried phenotype. Models adjusted for age, sex, and smoking. Cox proportional hazards models, adjusted for competing risk of death, assessed the association between prevalent frailty and incident AF. Logistic regression models assessed the association between prevalent AF and new-onset frailty. For the incident AF analysis, we included 2053 participants (56% women; mean age, 69.7+/-6.9 years). By Fried criteria, 1018 (50%) were robust, 903 (44%) were prefrail, and 132 (6%) were frail. In total, 306 incident cases of AF occurred during an average 9.2 (SD, 3.1) follow-up years. After adjustment, there was no statistically significant association between prevalent frailty status and incident AF (prefrail versus robust: hazard ratio [HR], 1.22 [95% CI, 0.95-1.55]; frail versus robust: HR, 0.92 [95% CI, 0.57-1.47]). At follow-up, there were 111 new cases of frailty. After adjustment, there was no statistically significant association between prevalent AF and new-onset frailty (odds ratio, 0.48 [95% CI, 0.17-1.36]).
Conclusions: Although a bidirectional association between frailty and cardiovascular disease has been suggested, we did not find evidence of an association between frailty and AF. Our findings may be limited by sample size and should be further explored in other populations
The GAPS Programme with HARPS-N@TNG IX. The multi-planet system KELT-6: detection of the planet KELT-6 c and measurement of the Rossiter-McLaughlin effect for KELT-6 b
Aims. For more than 1.5 years we monitored spectroscopically the star KELT-6
(BD+312447), known to host the transiting hot Saturn KELT-6b, because a
previously observed long-term trend in radial velocity time series suggested
the existence of an outer companion. Methods. We collected a total of 93 new
spectra with the HARPS-N and TRES spectrographs. A spectroscopic transit of
KELT-6b was observed with HARPS-N, and simultaneous photometry was obtained
with the IAC-80 telescope. Results. We proved the existence of an outer planet
with a mininum mass Msini=3.710.21 M and a
moderately eccentric orbit () of period P3.5
years. We improved the orbital solution of KELT-6b and obtained the first
measurement of the Rossiter-McLaughlin effect, showing that the planet has a
likely circular, prograde, and slightly misaligned orbit, with a projected
spin-orbit angle =3611 degrees. We improved the KELT-6b
transit ephemeris from photometry, and we provided new measurements of the
stellar parameters. KELT-6 appears as an interesting case to study the
formation and evolution of multi-planet systems.Comment: Letter, 4 figures, accepted for publication in A&A. Some language
editing and numbering of the paper series changed (from X to IX
The GAPS Programme with HARPS-N at TNG VIII: Observations of the Rossiter-McLaughlin effect and characterisation of the transiting planetary systems HAT-P-36 and WASP-11/HAT-P-10
We determine the true and the projected obliquity of HAT-P-36 and
WASP-11/HAT-P-10 systems, respectively, which are both composed of a relatively
cool star and a hot-Jupiter planet. Thanks to the high-resolution spectrograph
HARPS-N, we observed the Rossiter-McLaughlin effect for both the systems by
acquiring precise radial-velocity measurements during planetary transit events.
We also present photometric observations comprising six light curves covering
five transit events, obtained using three medium-class telescopes and the
telescope-defocussing technique. One transit of WASP-11/HAT-P-10 was followed
simultaneously from two observatories. The three transit light curves of
HAT-P-36b show anomalies that are attributable to starspot complexes on the
surface of the parent star, in agreement with the analysis of its spectra that
indicate a moderate activity. By analysing the complete HATNet data set of
HAT-P-36, we estimated the stellar rotation period by detecting a periodic
photometric modulation in the light curve caused by star spots, obtaining
Prot=15.3 days, which implies that the inclination of the stellar rotational
axis with respect to the line of sight is 65 degree. We used the new
spectroscopic and photometric data to revise the main physical parameters and
measure the sky-projected misalignment angle of the two systems. We found
\lambda=-14 degree for HAT-P-36 and \lambda=7 degree for WASP-11/HAT-P-10,
indicating in both cases a good spin-orbit alignment. In the case of HAT-P-36,
we also measured its real obliquity, which turned out to be 25 degrees.Comment: 18 pages, 14 figure
Data abstractions for decision tree induction
AbstractWhen descriptions of data values in a database are too concrete or too detailed, the computational complexity needed to discover useful knowledge from the database will be generally increased. Furthermore, discovered knowledge tends to become complicated. A notion of data abstraction seems useful to resolve this kind of problems, as we obtain a smaller and more general database after the abstraction, from which we can quickly extract more abstract knowledge that is expected to be easier to understand. In general, however, since there exist several possible abstractions, we have to carefully select one according to which the original database is generalized. An inadequate selection would make the accuracy of extracted knowledge worse.From this point of view, we propose in this paper a method of selecting an appropriate abstraction from possible ones, assuming that our task is to construct a decision tree from a relational database. Suppose that, for each attribute in a relational database, we have a class of possible abstractions for the attribute values. As an appropriate abstraction for each attribute, we prefer an abstraction such that, even after the abstraction, the distribution of target classes necessary to perform our classification task can be preserved within an acceptable error range given by user.By the selected abstractions, the original database can be transformed into a small generalized database written in abstract values. Therefore, it would be expected that, from the generalized database, we can construct a decision tree whose size is much smaller than one constructed from the original database. Furthermore, such a size reduction can be justified under some theoretical assumptions. The appropriateness of abstraction is precisely defined in terms of the standard information theory. Therefore, we call our abstraction framework Information Theoretical Abstraction.We show some experimental results obtained by a system ITA that is an implementation of our abstraction method. From those results, it is verified that our method is very effective in reducing the size of detected decision tree without making classification errors so worse
Objective physical activity and physical performance in middle-aged and older adults
Background: Older adults may have difficulty meeting the Physical Activity (PA) Guidelines. A favorable balance between PA and sedentary time (SED) is an important determinant of physical performance in older adults. Our objective was to explore associations of PA/SED with physical performance across mid-older age in adults without overt mobility disability. Methods: Framingham Offspring Study participants free of mobility disability with accelerometry and physical performance data (gait speed, chair stand time, and handgrip strength), were studied in cross-sectional analysis (n = 1352). We regressed physical performance on PA level, measured using steps, moderate to vigorous (MV)PA and SED. We stratified by age groups, adjusted for covariates, and modelled MVPA and SED separately and together as predictors. Results: Only 38% of adults 50–64 years and 15% of adults ≥75 years met the PA Guidelines (i.e., 150 min MVPA per week). Individuals achieving at least 5 min/day of MVPA had 0.062 ± 0.013 m/s greater gait speed and better chair stands and handgrip strength (in women) than those with 0.05). For adults ≥75 years, every 5000 more steps/day related to ~0.045 m/s greater gait speed (p = 0.006). Conclusion: Our cross-sectional study demonstrated that, across mid-older adulthood, MVPA related to better physical performance, but in adults ≥75 years, total steps walked associated with better gait speed. These data warrant future research on the impact of PA on physical performance and health outcomes in older age
Genome-wide association with bone mass and geometry in the Framingham Heart Study
© 2007 Kiel et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution Licens
Comparison of On-Site Versus Remote Mobile Device Support in the Framingham Heart Study Using the Health eHeart Study for Digital Follow-up: Randomized Pilot Study Set Within an Observational Study Design
BACKGROUND: New electronic cohort (e-Cohort) study designs provide resource-effective methods for collecting participant data. It is unclear if implementing an e-Cohort study without direct, in-person participant contact can achieve successful participation rates.
OBJECTIVE: The objective of this study was to compare 2 distinct enrollment methods for setting up mobile health (mHealth) devices and to assess the ongoing adherence to device use in an e-Cohort pilot study.
METHODS: We coenrolled participants from the Framingham Heart Study (FHS) into the FHS-Health eHeart (HeH) pilot study, a digital cohort with infrastructure for collecting mHealth data. FHS participants who had an email address and smartphone were randomized to our FHS-HeH pilot study into 1 of 2 study arms: remote versus on-site support. We oversampled older adults (age \u3e /=65 years), with a target of enrolling 20% of our sample as older adults. In the remote arm, participants received an email containing a link to enrollment website and, upon enrollment, were sent 4 smartphone-connectable sensor devices. Participants in the on-site arm were invited to visit an in-person FHS facility and were provided in-person support for enrollment and connecting the devices. Device data were tracked for at least 5 months.
RESULTS: Compared with the individuals who declined, individuals who consented to our pilot study (on-site, n=101; remote, n=93) were more likely to be women, highly educated, and younger. In the on-site arm, the connection and initial use of devices was \u3e /=20% higher than the remote arm (mean percent difference was 25% [95% CI 17-35] for activity monitor, 22% [95% CI 12-32] for blood pressure cuff, 20% [95% CI 10-30] for scale, and 43% [95% CI 30-55] for electrocardiogram), with device connection rates in the on-site arm of 99%, 95%, 95%, and 84%. Once connected, continued device use over the 5-month study period was similar between the study arms.
CONCLUSIONS: Our pilot study demonstrated that the deployment of mobile devices among middle-aged and older adults in the context of an on-site clinic visit was associated with higher initial rates of device use as compared with offering only remote support. Once connected, the device use was similar in both groups
Caenorhabditis elegans orthologs of human genes differentially expressed with age are enriched for determinants of longevity
We report a systematic RNAi longevity screen of 82 Caenorhabditis elegans genes selected based on orthology to human genes differentially expressed with age. We find substantial enrichment in genes for which knockdown increased lifespan. This enrichment is markedly higher than published genomewide longevity screens in C. elegans and similar to screens that preselected candidates based on longevity-correlated metrics (e.g., stress resistance). Of the 50 genes that affected lifespan, 46 were previously unreported. The five genes with the greatest impact on lifespan (>20% extension) encode the enzyme kynureninase (kynu-1), a neuronal leucine-rich repeat protein (iglr-1), a tetraspanin (tsp-3), a regulator of calcineurin (rcan-1), and a voltage-gated calcium channel subunit (unc-36). Knockdown of each gene extended healthspan without impairing reproduction. kynu-1(RNAi) alone delayed pathology in C. elegans models of Alzheimer's disease and Huntington's disease. Each gene displayed a distinct pattern of interaction with known aging pathways. In the context of published work, kynu-1, tsp-3, and rcan-1 are of particular interest for immediate follow-up. kynu-1 is an understudied member of the kynurenine metabolic pathway with a mechanistically distinct impact on lifespan. Our data suggest that tsp-3 is a novel modulator of hypoxic signaling and rcan-1 is a context-specific calcineurin regulator. Our results validate C. elegans as a comparative tool for prioritizing human candidate aging genes, confirm age-associated gene expression data as valuable source of novel longevity determinants, and prioritize select genes for mechanistic follow-up
- …