4,017 research outputs found
Developing transferable management skills through Action Learning
There has been increasing criticism of the relevance of the Master of Business Administration (MBA) in developing skills and competencies. Action learning, devised to address problem-solving in the workplace, offers a potential response to such criticism. This paper offers an insight into one university’s attempt to integrate action learning into the curriculum. Sixty-five part-time students were questioned at two points in their final year about their action learning experience and the enhancement of relevant skills and competencies. Results showed a mixed picture. Strong confirmation of the importance of selected skills and competencies contrasted with weaker agreement about the extent to which these were developed by action learning. There was, nonetheless, a firm belief in the positive impact on the learning process. The paper concludes that action learning is not a panacea but has an important role in a repertoire of educational approaches to develop relevant skills and competencies
Development of probabilistic models for quantitative pathway analysis of plant pest introduction for the EU territory
This report demonstrates a probabilistic quantitative pathway analysis model that can be used in risk assessment for plant pest introduction into EU territory on a range of edible commodities (apples, oranges, stone fruits and wheat). Two types of model were developed: a general commodity model that simulates distribution of an imported infested/infected commodity to and within the EU from source countries by month; and a consignment model that simulates the movement and distribution of individual consignments from source countries to destinations in the EU. The general pathway model has two modules. Module 1 is a trade pathway model, with a Eurostat database of five years of monthly trade volumes for each specific commodity into the EU28 from all source countries and territories. Infestation levels based on interception records, commercial quality standards or other information determine volume of infested commodity entering and transhipped within the EU. Module 2 allocates commodity volumes to processing, retail use and waste streams and overlays the distribution onto EU NUTS2 regions based on population densities and processing unit locations. Transfer potential to domestic host crops is a function of distribution of imported infested product and area of domestic production in NUTS2 regions, pest dispersal potential, and phenology of susceptibility in domestic crops. The consignment model covers the several routes on supply chains for processing and retail use. The output of the general pathway model is a distribution of estimated volumes of infested produce by NUTS2 region across the EU28, by month or annually; this is then related to the accessible susceptible domestic crop. Risk is expressed as a potential volume of infested fruit in potential contact with an area of susceptible domestic host crop. The output of the consignment model is a volume of infested produce retained at each stage along the specific consignment trade chain
The pre-WDVV ring of physics and its topology
We show how a simplicial complex arising from the WDVV
(Witten-Dijkgraaf-Verlinde-Verlinde) equations of string theory is the
Whitehouse complex. Using discrete Morse theory, we give an elementary proof
that the Whitehouse complex is homotopy equivalent to a wedge of
spheres of dimension . We also verify the Cohen-Macaulay
property. Additionally, recurrences are given for the face enumeration of the
complex and the Hilbert series of the associated pre-WDVV ring.Comment: 13 pages, 4 figures, 2 table
Alternating groups and moduli space lifting Invariants
Main Theorem: Spaces of r-branch point 3-cycle covers, degree n or Galois of
degree n!/2 have one (resp. two) component(s) if r=n-1 (resp. r\ge n). Improves
Fried-Serre on deciding when sphere covers with odd-order branching lift to
unramified Spin covers. We produce Hurwitz-Torelli automorphic functions on
Hurwitz spaces, and draw Inverse Galois conclusions. Example: Absolute spaces
of 3-cycle covers with +1 (resp. -1) lift invariant carry canonical even (resp.
odd) theta functions when r is even (resp. odd). For inner spaces the result is
independent of r. Another use appears in,
http://www.math.uci.edu/~mfried/paplist-mt/twoorbit.html, "Connectedness of
families of sphere covers of A_n-Type." This shows the M(odular) T(ower)s for
the prime p=2 lying over Hurwitz spaces first studied by,
http://www.math.uci.edu/~mfried/othlist-cov/hurwitzLiu-Oss.pdf, Liu and
Osserman have 2-cusps. That is sufficient to establish the Main Conjecture: (*)
High tower levels are general-type varieties and have no rational points.For
infinitely many of those MTs, the tree of cusps contains a subtree -- a spire
-- isomorphic to the tree of cusps on a modular curve tower. This makes
plausible a version of Serre's O(pen) I(mage) T(heorem) on such MTs.
Establishing these modular curve-like properties opens, to MTs, modular
curve-like thinking where modular curves have never gone before. A fuller html
description of this paper is at
http://www.math.uci.edu/~mfried/paplist-cov/hf-can0611591.html .Comment: To appear in the Israel Journal as of 1/5/09; v4 is corrected from
proof sheets, but does include some proof simplification in \S
On the numerical evaluation of algebro-geometric solutions to integrable equations
Physically meaningful periodic solutions to certain integrable partial
differential equations are given in terms of multi-dimensional theta functions
associated to real Riemann surfaces. Typical analytical problems in the
numerical evaluation of these solutions are studied. In the case of
hyperelliptic surfaces efficient algorithms exist even for almost degenerate
surfaces. This allows the numerical study of solitonic limits. For general real
Riemann surfaces, the choice of a homology basis adapted to the
anti-holomorphic involution is important for a convenient formulation of the
solutions and smoothness conditions. Since existing algorithms for algebraic
curves produce a homology basis not related to automorphisms of the curve, we
study symplectic transformations to an adapted basis and give explicit formulae
for M-curves. As examples we discuss solutions of the Davey-Stewartson and the
multi-component nonlinear Schr\"odinger equations.Comment: 29 pages, 20 figure
The Bethe ansatz in a periodic box-ball system and the ultradiscrete Riemann theta function
Vertex models with quantum group symmetry give rise to integrable cellular
automata at q=0. We study a prototype example known as the periodic box-ball
system. The initial value problem is solved in terms of an ultradiscrete
analogue of the Riemann theta function whose period matrix originates in the
Bethe ansatz at q=0.Comment: 11 pages, 1 figur
Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p_x+ip_y paired superfluids
Many trial wavefunctions for fractional quantum Hall states in a single
Landau level are given by functions called conformal blocks, taken from some
conformal field theory. Also, wavefunctions for certain paired states of
fermions in two dimensions, such as p_x+ip_y states, reduce to such a form at
long distances. Here we investigate the adiabatic transport of such
many-particle trial wavefunctions using methods from two-dimensional field
theory. One context for this is to calculate the statistics of widely-separated
quasiholes, which has been predicted to be non-Abelian in a variety of cases.
The Berry phase or matrix (holonomy) resulting from adiabatic transport around
a closed loop in parameter space is the same as the effect of analytic
continuation around the same loop with the particle coordinates held fixed
(monodromy), provided the trial functions are orthonormal and holomorphic in
the parameters so that the Berry vector potential (or connection) vanishes. We
show that this is the case (up to a simple area term) for paired states
(including the Moore-Read quantum Hall state), and present general conditions
for it to hold for other trial states (such as the Read-Rezayi series). We
argue that trial states based on a non-unitary conformal field theory do not
describe a gapped topological phase, at least in many cases. By considering
adiabatic variation of the aspect ratio of the torus, we calculate the Hall
viscosity, a non-dissipative viscosity coefficient analogous to Hall
conductivity, for paired states, Laughlin states, and more general quantum Hall
states. Hall viscosity is an invariant within a topological phase, and is
generally proportional to the "conformal spin density" in the ground state.Comment: 44 pages, RevTeX; v2 minor changes; v3 typos corrected, three small
addition
On a new compactification of moduli of vector bundles on a surface, IV: Nonreduced moduli
The construction for nonreduced projective moduli scheme of semistable
admissible pairs is performed. We establish the relation of this moduli scheme
with reduced moduli scheme built up in the previous article and prove that
nonreduced moduli scheme contains an open subscheme which is isomorphic to
moduli scheme of semistable vector bundles.Comment: 20 pages, additions and removal
Discrete coherent and squeezed states of many-qudit systems
We consider the phase space for a system of identical qudits (each one of
dimension , with a primer number) as a grid of
points and use the finite field to label the corresponding axes.
The associated displacement operators permit to define -parametrized
quasidistribution functions in this grid, with properties analogous to their
continuous counterparts. These displacements allow also for the construction of
finite coherent states, once a fiducial state is fixed. We take this reference
as one eigenstate of the discrete Fourier transform and study the factorization
properties of the resulting coherent states. We extend these ideas to include
discrete squeezed states, and show their intriguing relation with entangled
states between different qudits.Comment: 11 pages, 3 eps figures. Submitted for publicatio
General relativistic gravitational field of a rigidly rotating disk of dust: Solution in terms of ultraelliptic functions
In a recent paper we presented analytic expressions for the axis potential,
the disk metric, and the surface mass density of the global solution to
Einstein's field equations describing a rigidly rotating disk of dust. Here we
add the complete solution in terms of ultraelliptic functions and quadratures.Comment: 5 pages, published in 1995 [Phys. Rev. Lett. 75 (1995) 3046
- …