21 research outputs found

    Neuroanatomical Pattern of Mitochondrial Complex I Pathology Varies between Schizophrenia, Bipolar Disorder and Major Depression

    Get PDF
    BACKGROUND:Mitochondrial dysfunction was reported in schizophrenia, bipolar disorderand major depression. The present study investigated whether mitochondrial complex I abnormalities show disease-specific characteristics. METHODOLOGY/PRINCIPAL FINDINGS:mRNA and protein levels of complex I subunits NDUFV1, NDUFV2 and NADUFS1, were assessed in striatal and lateral cerebellar hemisphere postmortem specimens and analyzed together with our previous data from prefrontal and parieto-occipital cortices specimens of patients with schizophrenia, bipolar disorder, major depression and healthy subjects. A disease-specific anatomical pattern in complex I subunits alterations was found. Schizophrenia-specific reductions were observed in the prefrontal cortex and in the striatum. The depressed group showed consistent reductions in all three subunits in the cerebellum. The bipolar group, however, showed increased expression in the parieto-occipital cortex, similar to those observed in schizophrenia, and reductions in the cerebellum, yet less consistent than the depressed group. CONCLUSIONS/SIGNIFICANCE:These results suggest that the neuroanatomical pattern of complex I pathology parallels the diversity and similarities in clinical symptoms of these mental disorders

    Osteoclast-derived IGF1 induces RANKL production in osteocytes and contributes to pagetic lesion formation

    No full text
    We previously reported that measles virus nucleocapsid protein (MVNP) expression in osteoclasts (OCLs) of patients with Paget disease (PD) or targeted to the OCL lineage in MVNP-transgenic mice (MVNP mice) increases IGF1 production in osteoclasts (OCL-IGF1) and leads to development of PD OCLs and pagetic bone lesions (PDLs). Conditional deletion of Igf1 in OCLs of MVNP mice fully blocked development of PDLs. In this study, we examined whether osteocytes (OCys), key regulators of normal bone remodeling, contribute to PD. OCys in PDLs of patients and of MVNP mice expressed less sclerostin, and had increased RANKL expression compared with OCys in bones from WT mice or normal patients. To test whether increased OCL-IGF1 is sufficient to induce PDLs and PD phenotypes, we generated TRAP-Igf1 (T-Igf1) transgenic mice to determine whether increased IGF1 expression in the absence of MVNP in OCLs is sufficient to induce PDLs and pagetic OCLs. We found that T-Igf1 mice at 16 months of age developed PD OCLs, PDLs, and OCys, with decreased sclerostin and increased RANKL, similar to MVNP mice. Thus, pagetic phenotypes could be induced by OCLs expressing increased IGF1. OCL-IGF1 in turn increased RANKL production in OCys to induce PD OCLs and PDLs

    The Effects of Bone Morphogenetic Protein 2 and Thrombopoietin Treatment on Angiogenic Properties of Endothelial Cells Derived from the Lung and Bone Marrow of Young and Aged, Male and Female Mice

    No full text
    With an aging world population, there is an increased risk of fracture and impaired healing. One contributing factor may be aging-associated decreases in vascular function; thus, enhancing angiogenesis could improve fracture healing. Both bone morphogenetic protein 2 (BMP-2) and thrombopoietin (TPO) have pro-angiogenic effects. The aim of this study was to investigate the effects of treatment with BMP-2 or TPO on the in vitro angiogenic and proliferative potential of endothelial cells (ECs) isolated from lungs (LECs) or bone marrow (BMECs) of young (3-4 months) and old (22-24 months), male and female, C57BL/6J mice. Cell proliferation, vessel-like structure formation, migration, and gene expression were used to evaluate angiogenic properties. In vitro characterization of ECs generally showed impaired vessel-like structure formation and proliferation in old ECs compared to young ECs, but improved migration characteristics in old BMECs. Differential sex-based angiogenic responses were observed, especially with respect to drug treatments and gene expression. Importantly, these studies suggest that NTN1, ROBO2, and SLIT3, along with angiogenic markers (CD31, FLT-1, ANGPT1, and ANGP2) differentially regulate EC proliferation and functional outcomes based on treatment, sex, and age. Furthermore, treatment of old ECs with TPO typically improved vessel-like structure parameters, but impaired migration. Thus, TPO may serve as an alternative treatment to BMP-2 for fracture healing in aging owing to improved angiogenesis and fracture healing, and the lack of side effects associated with BMP-2
    corecore