39 research outputs found

    Spreading in Disordered Lattices with Different Nonlinearities

    Full text link
    We study the spreading of initially localized states in a nonlinear disordered lattice described by the nonlinear Schr\"odinger equation with random on-site potentials - a nonlinear generalization of the Anderson model of localization. We use a nonlinear diffusion equation to describe the subdiffusive spreading. To confirm the self-similar nature of the evolution we characterize the peak structure of the spreading states with help of R\'enyi entropies and in particular with the structural entropy. The latter is shown to remain constant over a wide range of time. Furthermore, we report on the dependence of the spreading exponents on the nonlinearity index in the generalized nonlinear Schr\"odinger disordered lattice, and show that these quantities are in accordance with previous theoretical estimates, based on assumptions of weak and very weak chaoticity of the dynamics.Comment: 5 pages, 6 figure

    Re-localization due to finite response times in a nonlinear Anderson chain

    Full text link
    We study a disordered nonlinear Schr\"odinger equation with an additional relaxation process having a finite response time τ\tau. Without the relaxation term, τ=0\tau=0, this model has been widely studied in the past and numerical simulations showed subdiffusive spreading of initially localized excitations. However, recently Caetano et al.\ (EPJ. B \textbf{80}, 2011) found that by introducing a response time τ>0\tau > 0, spreading is suppressed and any initially localized excitation will remain localized. Here, we explain the lack of subdiffusive spreading for τ>0\tau>0 by numerically analyzing the energy evolution. We find that in the presence of a relaxation process the energy drifts towards the band edge, which enforces the population of fewer and fewer localized modes and hence leads to re-localization. The explanation presented here is based on previous findings by the authors et al.\ (PRE \textbf{80}, 2009) on the energy dependence of thermalized states.Comment: 3 pages, 4 figure

    Strong and weak chaos in weakly nonintegrable many-body Hamiltonian systems

    Full text link
    We study properties of chaos in generic one-dimensional nonlinear Hamiltonian lattices comprised of weakly coupled nonlinear oscillators, by numerical simulations of continuous-time systems and symplectic maps. For small coupling, the measure of chaos is found to be proportional to the coupling strength and lattice length, with the typical maximal Lyapunov exponent being proportional to the square root of coupling. This strong chaos appears as a result of triplet resonances between nearby modes. In addition to strong chaos we observe a weakly chaotic component having much smaller Lyapunov exponent, the measure of which drops approximately as a square of the coupling strength down to smallest couplings we were able to reach. We argue that this weak chaos is linked to the regime of fast Arnold diffusion discussed by Chirikov and Vecheslavov. In disordered lattices of large size we find a subdiffusive spreading of initially localized wave packets over larger and larger number of modes. The relations between the exponent of this spreading and the exponent in the dependence of the fast Arnold diffusion on coupling strength are analyzed. We also trace parallels between the slow spreading of chaos and deterministic rheology.Comment: 15 pages, 14 figure

    Drastic fall-off of the thermal conductivity for disordered lattices in the limit of weak anharmonic interactions

    Full text link
    We study the thermal conductivity, at fixed positive temperature, of a disordered lattice of harmonic oscillators, weakly coupled to each other through anharmonic potentials. The interaction is controlled by a small parameter Ï”>0\epsilon > 0. We rigorously show, in two slightly different setups, that the conductivity has a non-perturbative origin. This means that it decays to zero faster than any polynomial in Ï”\epsilon as ϔ→0\epsilon\rightarrow 0. It is then argued that this result extends to a disordered chain studied by Dhar and Lebowitz, and to a classical spins chain recently investigated by Oganesyan, Pal and Huse.Comment: 21 page

    A numerical and symbolical approximation of the Nonlinear Anderson Model

    Full text link
    A modified perturbation theory in the strength of the nonlinear term is used to solve the Nonlinear Schroedinger Equation with a random potential. It is demonstrated that in some cases it is more efficient than other methods. Moreover we obtain error estimates. This approach can be useful for the solution of other nonlinear differential equations of physical relevance.Comment: 21 pages and 7 figure

    Dynamical Thermalization of Disordered Nonlinear Lattices

    Full text link
    We study numerically how the energy spreads over a finite disordered nonlinear one-dimensional lattice, where all linear modes are exponentially localized by disorder. We establish emergence of dynamical thermalization, characterized as an ergodic chaotic dynamical state with a Gibbs distribution over the modes. Our results show that the fraction of thermalizing modes is finite and grows with the nonlinearity strength.Comment: 5 pages, 5 figure

    Spreading, Nonergodicity, and Selftrapping: a puzzle of interacting disordered lattice waves

    Full text link
    Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transitions, the quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays, to name just a few examples. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field of lattice waves. In particular it leads to the prediction and observation of two different regimes of destruction of Anderson localization - asymptotic weak chaos, and intermediate strong chaos, separated by a crossover condition on densities. On the other side approximate full quantum interacting many body treatments were recently used to predict and obtain a novel many body localization transition, and two distinct phases - a localization phase, and a delocalization phase, both again separated by some typical density scale. We will discuss selftrapping, nonergodicity and nonGibbsean phases which are typical for such discrete models with particle number conservation and their relation to the above crossover and transition physics. We will also discuss potential connections to quantum many body theories.Comment: 13 pages in Springer International Publishing Switzerland 2016 1 M. Tlidi and M. G. Clerc (eds.), Nonlinear Dynamics: Materials, Theory and Experiment, Springer Proceedings in Physics 173. arXiv admin note: text overlap with arXiv:1405.112

    Kolmogorov turbulence, Anderson localization and KAM integrability

    Full text link
    The conditions for emergence of Kolmogorov turbulence, and related weak wave turbulence, in finite size systems are analyzed by analytical methods and numerical simulations of simple models. The analogy between Kolmogorov energy flow from large to small spacial scales and conductivity in disordered solid state systems is proposed. It is argued that the Anderson localization can stop such an energy flow. The effects of nonlinear wave interactions on such a localization are analyzed. The results obtained for finite size system models show the existence of an effective chaos border between the Kolmogorov-Arnold-Moser (KAM) integrability at weak nonlinearity, when energy does not flow to small scales, and developed chaos regime emerging above this border with the Kolmogorov turbulent energy flow from large to small scales.Comment: 8 pages, 6 figs, EPJB style

    Perturbation theory for the Nonlinear Schroedinger Equation with a random potential

    Full text link
    A perturbation theory for the Nonlinear Schroedinger Equation (NLSE) in 1D on a lattice was developed. The small parameter is the strength of the nonlinearity. For this purpose secular terms were removed and a probabilistic bound on small denominators was developed. It was shown that the number of terms grows exponentially with the order. The results of the perturbation theory are compared with numerical calculations. An estimate on the remainder is obtained and it is demonstrated that the series is asymptotic.Comment: 30 pages, 7 figures, accepted to Nonlinearit
    corecore