3 research outputs found

    A Potential Malaria Vaccine Candidate Identified Using an Insilico Approach

    Get PDF
    The search for an effective malaria vaccine has yielded no success yet. Unfortunately, resistance to post-infection treatments is on the increase hence the need to develop an efficient vaccine. The aim of many reverse vaccinology studies is to identify novel proteins found exposed on the surface. Many malaria vaccine candidates can be effective tools against malaria but gross allelic polymorphism is a major hinderance which could be overcome by using highly conserved proteins. Also peptide based vaccines can be of great importance in fighting malaria however this is limited by HLA restriction which can be maneuvered  by using promiscuous peptides. In the current work, our objective was to computationally identify conserved hypothetical, antigenic, surface proteins in pathogenic plasmodium falciparum parasite. So in this study, we employed an in silico approach to screen the proteins on the basis of surface localization, non-homology with host proteome, and MHC class I and II binding promiscuity. The analyses reported XP_001351004.1 an uncharacterized protein as a novel vaccine candidate. Generation of the 3D model of the protein was done using RaptorX server. Furthermore, the B cell and T cell epitopes were also predicted. B cell epitopes were predicted using ABCpred and Kolanskar and Tongaonkar antigenicity method while Tcell epitopes were predicted using CTLpred.Five peptides were selected based on their hydrophobicity. Results from this study could be extended to in-vivo and in-vitro experiments for future vaccine development

    Anti-Paraflagellar Rodc Antibodies Inhibit the In-Vitro Growth of Trypanosoma Brucei Brucei

    Get PDF
    Paraflagellar rod (PFR), a conserved structure expressed in all lifecycle stages of the order kinetoplasida except in the amastigotes is vital for the parasites survival. In T.b.brucei, the PFR protein has two major components, PFRc and PFRa with molecular mass 73kDa and 68kDa respectively. Experimental evidences implicate the PFR protein as a highly immunogenic and protective antigen. However, its immunogenic properties underlying its suitability as vaccine candidate has not been adequately investigated in-vitro. This study aimed to demonstrate the growth inhibitory potential of PFR protein against T.b.brucei parasites in–vitro. Antibodies against a recombinant form of the PFRc protein were produced and used to generate immune response. A deoxyribonucleotide (DNA) segment of approximate 672bp encoding the PFRc protein component was amplified using polymerase chain reaction (PCR), cloned and expressed in E.coli (BL21) cells. A 200 µg portion of the purified PFRc protein mixed with 100µl Freund's complete adjuvant (FCA) was used to immunize rabbits. An antibody titre of 2.5 x 104 reciprocal dilutions was obtained following three immunisation boosts, spaced two weeks apart. Western blot analysis showed that rabbit anti-PFRc antibodies recognised specifically a 25kDa protein corresponding to the estimated size of the expressed PFRc protein. 25% of purified anti-rabbit IgG antibodies were able to inhibit ~70% T.b.brucei parasite in vitro. This confirmed that the PFRc protein is immunogenic in rabbits and can elicit specific growth inhibitory antibodies. However, we recommend invivo studies in humans and domestic animals infected by trypanosomes to ascertain the vaccine potential of this candidate protein for trypanosomiasis

    Screening and characterization of hypothetical proteins of Plasmodium falciparum as novel vaccine candidates in the fight against malaria using reverse vaccinology

    No full text
    Abstract Background Plasmodium falciparum is the most deadly and leading cause of morbidity and mortality in Africa. About 90% of all malaria deaths in the world today occur in Sub-Saharan Africa especially in children aged < 5 years. In 2018, it was reported that there were 228 million malaria cases that resulted in 405,000 deaths from 91 countries. Currently, a fully effective and long-lasting preventive malaria vaccine is still elusive therefore more effort is needed to identify better effective vaccine candidates. The aim of this study was to identify and characterize hypothetical proteins as vaccine candidates derived from Plasmodium falciparum 3D7 genome by reverse vaccinology. Results Of the 23 selected hypothetical proteins, 5 were predicted on the extracellular localization by WoLFPSORTv.2.0 program and all the 5 had less than 2 transmembrane regions that were predicted by TMHMMv2.0 and HMMTOP programs at default settings. Two out of the five proteins lacked secretory signal peptides as predicted by SignalP program. Among the 5 extracellular proteins, 3 were predicted to be antigenic by VaxiJen (score ≥ 0.5) and had negative GRAVY values ranging from − 1.156 to − 0.440. B cell epitope prediction by ABCpred and BCpred programs revealed a total of 15 antigenic epitopes. A total of 13 cytotoxic T cells were predicted from the 3 proteins using CTLPred online server. Only 2 out of the 13 CTL were antigenic, immunogenic, non-allergenic, and non-toxic using VaxiJen, IEDB, AllergenFp, and Toxinpred servers respectively in that order. Five HTL peptides from XP_001351030.1 protein are predicted inducers of all the three cytokines. STRING protein–protein network analysis of HPs revealed XP_001350955.1 closely interacts with nucleoside diphosphate kinase (PF13-0349) at 0.704, XP_001351030.1 interacts with male development protein1 (Mdv-1) at 0.645, and XP_001351047.1 with an uncharacterized protein (MAL8P1.53) at 0.400. Conclusion Reverse vaccinology is a promising strategy for the screening and identification of antigenic antigens with potential capacity to elicit cellular and humoral immune responses against P. falciparum infection. In this study, potential vaccine candidates of Plasmodium falciparum were identified and screened using standard bioinformatics tools. The vaccine candidates contained antigenic and immunogenic epitopes which could be considered for novel and effective vaccine targets. However, we strongly recommend in vivo and in vitro experiments to validate their immunogenicity and protective efficacy to completely decipher the vaccine targets against malaria
    corecore