97 research outputs found
Recommended from our members
Host and bacterial factors that regulate LC3 recruitment to Listeria monocytogenes during the early stages of macrophage infection
Listeria monocytogenes is a bacterial pathogen that can escape the phagosome and replicate in the cytosol of host cells during infection. We previously observed that a population (up to 35%) of L. monocytogenes strain 10403S colocalize with the macroautophagy marker LC3 at 1 h postinfection. This is thought to give rise to spacious Listeria-containing phagosomes (SLAPs), a membrane-bound compartment harboring slow-growing bacteria that is associated with persistent infection. Here, we examined the host and bacterial factors that mediate LC3 recruitment to bacteria at 1 h postinfection. At this early time point, LC3+ bacteria were present within single-membrane phagosomes that are LAMP1+. Protein ubiquitination is known to play a role in targeting cytosolic L. monocytogenes to macroautophagy. However, we found that neither protein ubiquitination nor the ubiquitin-binding adaptor SQSTM1/p62 are associated with LC3+ bacteria at 1 h postinfection. Reactive oxygen species (ROS) production by the CYBB/NOX2 NADPH oxidase was also required for LC3 recruitment to bacteria at 1 h postinfection and for subsequent SLAP formation. Diacylglycerol is an upstream activator of the CYBB/NOX2 NADPH oxidase, and its production by both bacterial and host phospholipases was required for LC3 recruitment to bacteria. Our data suggest that the LC3-associated phagocytosis (LAP) pathway, which is distinct from macroautophagy, targets L. monocytogenes during the early stage of infection within host macrophages and allows establishment of an intracellular niche (SLAPs) associated with persistent infection
Recommended from our members
Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread
Efferocytosis, the process by which dying/dead cells are removed by phagocytosis, plays an important role in development, tissue homeostasis and innate immunity1. Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes (Lm), can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can escape the phagosome in host cells using the pore-forming toxin Listeriolysin O (LLO) and two phospholipases C2. Expression of the cell surface protein ActA allows Lm to activate host actin regulatory factors and undergo actin-based motility in the cytosol, eventually leading to formation of actin-rich protrusions at the cell surface. We show that protrusion formation is associated with plasma membrane damage due to LLO’s pore-forming activity. LLO also promotes the release of bacteria-containing protrusions from the host cell, generating membrane-derived vesicles with exofacial PS. The PS-binding receptor TIM-4 contributes to efficient cell-to-cell spread by Lm in macrophages in vitro and growth of these bacteria is impaired in TIM-4−/− mice. Thus, Lm promotes its dissemination in a host by exploiting efferocytosis. Our study suggests that PS-targeted therapeutics may be useful in the fight against infections by Lm and other bacteria that utilize similar strategies of cell-to-cell spread during infection
The Diagnostic Approach to Monogenic Very Early Onset Inflammatory Bowel Disease
Patients with a diverse spectrum of rare genetic disorders can present with inflammatory bowel disease (monogenic IBD). Patients with these disorders often develop symptoms during infancy or early childhood, along with endoscopic or histological features of Crohn’s disease, ulcerative colitis, or IBD unclassified. Defects in interleukin-10 signaling have a Mendelian inheritance pattern with complete penetrance of intestinal inflammation. Several genetic defects that disturb intestinal epithelial barrier function or affect innate and adaptive immune function have incomplete penetrance of the IBD-like phenotype. Several of these monogenic conditions do not respond to conventional therapy and are associated with high morbidity and mortality. Due to the broad spectrum of these extremely rare diseases, a correct diagnosis is frequently a challenge and often delayed. In many cases, these diseases cannot be categorized based on standard histological and immunologic features of IBD. Genetic analysis is required to identify the cause of the disorder and offer the patient appropriate treatment options, which include medical therapy, surgery, or allogeneic hematopoietic stem cell transplantation. In addition, diagnosis based on genetic analysis can lead to genetic counseling for family members of patients. We describe key intestinal, extraintestinal, and laboratory features of 50 genetic variants associated with IBD-like intestinal inflammation. In addition, we provide approaches for identifying patients likely to have these disorders. We also discuss classic approaches to identify these variants in patients, starting with phenotypic and functional assessments that lead to analysis of candidate genes. As a complementary approach, we discuss parallel genetic screening using next-generation sequencing followed by functional confirmation of genetic defects
Recommended from our members
Higher Activity of the Inducible Nitric Oxide Synthase Contributes to Very Early Onset Inflammatory Bowel Disease
OBJECTIVES: The NOS2 gene encodes for the inducible nitric oxide synthase (iNOS), responsible for nitric oxide (NO) production, which contributes to antimicrobial and antipathogenic activities. Higher levels of both iNOS and NO-induced damage have been observed in inflammatory bowel disease (IBD) patients. NOS2 may have a role in a specific subset of IBD patients with severe and/or extensive colitis. Therefore, the aim of this study is to examine the role of NOS2 in such a subset, very early onset IBD (VEO-IBD). METHODS: Seventeen tag single nucleotide polymorphisms (SNPs) in the NOS2 gene were successfully genotyped in VEO-IBD patients. Genetic associations were replicated in an independent VEO-IBD cohort. Functional analysis for iNOS activity was performed on the most significantly associated functional variant. RESULTS: The NOS2 rs2297518 SNP was found to be associated in VEO-IBD in two independent cohorts. Upon combined analysis, a coding variant (S608L) showed the strongest association with VEO-IBD (Pcombined=1.13 × 10−6, OR (odds ratio)=3.398 (95% CI (confidence interval) 2.02–5.717)) as well as associations with VEO-Crohn's disease and VEO-ulcerative colitis (UC). This variant also showed an association with UC diagnosed between 11 and 17 years of age but not with adult-onset IBD (>17 years). B-cell lymphoblastoid cell lines genotyped for the risk variant as well as Henle-407 cells transfected with a plasmid construct with the risk variant showed higher NO production. Colonic biopsies of VEO-IBD patients showed higher immunohistochemical staining of nitrotyrosine, indicating more nitrosative stress and tissue damage. CONCLUSIONS: These studies suggest the importance of iNOS in genetic susceptibility to younger IBD presentation due to higher NO production
Novel CARMIL2 loss-of-function variants are associated with pediatric inflammatory bowel disease
CARMIL2 is required for CD28-mediated co-stimulation of NF-kappa B signaling in T cells and its deficiency has been associated with primary immunodeficiency and, recently, very early onset inflammatory bowel disease (IBD). Here we describe the identification of novel biallelic CARMIL2 variants in three patients presenting with pediatric-onset IBD and in one with autoimmune polyendocrine syndrome (APS). None manifested overt clinical signs of immunodeficiency before their diagnosis. The first patient presented with very early onset IBD. His brother was found homozygous for the same CARMIL2 null variant and diagnosed with APS. Two other IBD patients were found homozygous for a nonsense and a missense CARMIL2 variant, respectively, and they both experienced a complicated postoperative course marked by severe infections. Immunostaining of bowel biopsies showed reduced CARMIL2 expression in all the three patients with IBD. Western blot and immunofluorescence of transfected cells revealed an altered expression pattern of the missense variant. Our work expands the genotypic and phenotypic spectrum of CARMIL2 deficiency, which can present with either IBD or APS, aside from classic immunodeficiency manifestations. CARMIL2 should be included in the diagnostic work-up of patients with suspected monogenic IBD
Mutation spectrum of NOD2 reveals recessive inheritance as a main driver of Early Onset Crohn’s Disease
Inflammatory bowel disease (IBD), clinically defined as Crohn’s disease (CD), ulcerative colitis (UC), or IBD-unclassified, results in chronic inflammation of the gastrointestinal tract in genetically susceptible hosts. Pediatric onset IBD represents ≥ 25% of all IBD diagnoses and often presents with intestinal stricturing, perianal disease, and failed response to conventional treatments. NOD2 was the first and is the most replicated locus associated with adult IBD, to date. However, its role in pediatric onset IBD is not well understood. We performed whole-exome sequencing on a cohort of 1,183 patients with pediatric onset IBD (ages 0–18.5 years). We identified 92 probands with biallelic rare and low frequency NOD2 variants accounting for approximately 8% of our cohort, suggesting a Mendelian inheritance pattern of disease. Additionally, we investigated the contribution of recessive inheritance of NOD2 alleles in adult IBD patients from a large clinical population cohort. We found that recessive inheritance of NOD2 variants explains ~ 7% of cases in this adult IBD cohort, including ~ 10% of CD cases, confirming the observations from our pediatric IBD cohort. Exploration of EHR data showed that several of these adult IBD patients obtained their initial IBD diagnosis before 18 years of age, consistent with early onset disease. While it has been previously reported that carriers of more than one NOD2 risk alleles have increased susceptibility to Crohn’s Disease (CD), our data formally demonstrate that recessive inheritance of NOD2 alleles is a mechanistic driver of early onset IBD, specifically CD, likely due to loss of NOD2 protein function. Collectively, our findings show that recessive inheritance of rare and low frequency deleterious NOD2 variants account for 7–10% of CD cases and implicate NOD2 as a Mendelian disease gene for early onset Crohn’s Disease
Human ALPI deficiency causes inflammatory bowel disease and highlights a key mechanism of gut homeostasis
Herein, we report the first identification of biallelic-inherited mutations in ALPI as a Mendelian cause of inflammatory bowel disease in two unrelated patients. ALPI encodes for intestinal phosphatase alkaline, a brush border metalloenzyme that hydrolyses phosphate from the lipid A moiety of lipopolysaccharides and thereby drastically reduces Toll-like receptor 4 agonist activity. Prediction tools and structural modelling indicate that all mutations affect critical residues or inter-subunit interactions, and heterologous expression in HEK293T cells demonstrated that all ALPI mutations were loss of function. ALPI mutations impaired either stability or catalytic activity of ALPI and rendered it unable to detoxify lipopolysaccharide-dependent signalling. Furthermore, ALPI expression was reduced in patients’ biopsies, and ALPI activity was undetectable in ALPI-deficient patient\u27s stool. Our findings highlight the crucial role of ALPI in regulating host–microbiota interactions and restraining host inflammatory responses. These results indicate that ALPI mutations should be included in screening for monogenic causes of inflammatory bowel diseases and lay the groundwork for ALPI-based treatments in intestinal inflammatory disorders
Single Nucleotide Polymorphisms That Increase Expression of the Guanosine Triphosphatase RAC1 Are Associated With Ulcerative Colitis
BACKGROUND & AIMS: RAC1 is a GTPase that has an evolutionarily conserved role in coordinating immune defenses, from plants to mammals. Chronic inflammatory bowel diseases (IBD) are associated with dysregulation of immune defenses. We studied the role of RAC1 in IBD using human genetic and functional studies and animal models of colitis. METHODS: We used a candidate gene approach to HapMap-Tag single nucleotide polymorphisms (SNPs) in a discovery cohort; findings were confirmed in 2 additional cohorts. RAC1 mRNA expression was examined from peripheral blood cells of patients. Colitis was induced in mice with conditional disruption of Rac1 in phagocytes by administration of dextran sulphate sodium (DSS). RESULTS: We observed a genetic association between RAC1 with ulcerative colitis (UC) in a discovery cohort, 2 independent replication cohorts, and in combined analysis for the SNPs rs10951982 (Pcombined UC = 3.3 × 10–8, odds ratio [OR]=1.43 [1.26–1.63]) and rs4720672 (Pcombined UC=4.7 × 10–6, OR=1.36 [1.19–1.58]). Patients with IBD who had the rs10951982 risk allele had increased expression of RAC1, compared to those without this allele. Conditional disruption of Rac1 in macrophage and neutrophils of mice protected them against DSS-induced colitis. CONCLUSION: Studies of human tissue samples and knockout mice demonstrated a role for the GTPase RAC1 in the development of UC; increased expression of RAC1 was associated with susceptibility to colitis
Diagnostic Delay Is Associated with Complicated Disease and Growth Impairment in Paediatric Crohn\u27s Disease
Background: Paediatric data on the association between diagnostic delay and inflammatory bowel disease [IBD] complications are lacking. We aimed to determine the effect of diagnostic delay on stricturing/fistulising complications, surgery, and growth impairment in a large paediatric cohort, and to identify predictors of diagnostic delay. Methods: We conducted a national, prospective, multicentre IBD inception cohort study including 1399 children. Diagnostic delay was defined as time from symptom onset to diagnosis \u3e75th percentile. Multivariable proportional hazards [PH] regression was used to examine the association between diagnostic delay and stricturing/fistulising complications and surgery, and multivariable linear regression to examine the association between diagnostic delay and growth. Predictors of diagnostic delay were identified using Cox PH regression. Results: Overall (64% Crohn\u27s disease [CD]; 36% ulcerative colitis/IBD unclassified [UC/IBD-U]; 57% male]), median time to diagnosis was 4.2 (interquartile range [IQR] 2.0-9.2) months. For the overall cohort, diagnostic delay was \u3e9.2 months; in CD, \u3e10.8 months and in UC/IBD-U, \u3e6.6 months. In CD, diagnostic delay was associated with a 2.5-fold higher rate of strictures/internal fistulae (hazard ratio [HR] 2.53, 95% confidence interval [CI] 1.41-4.56). Every additional month of diagnostic delay was associated with a decrease in height-for-age z-score of 0.013 standard deviations [95% CI 0.005-0.021]. Associations persisted after adjusting for disease location and therapy. No independent association was observed between diagnostic delay and surgery in CD or UC/IBD-U. Diagnostic delay was more common in CD, particularly small bowel CD. Abdominal pain, including isolated abdominal pain in CD, was associated with diagnostic delay. Conclusions: Diagnostic delay represents a risk factor for stricturing/internal fistulising complications and growth impairment in paediatric CD
- …