36 research outputs found
Preferred resting surfaces of dominant malaria vectors inside different house types in rural south-eastern Tanzania
Background:
Malaria control in Africa relies extensively on indoor residual spraying (IRS) and insecticide-treated nets (ITNs). IRS typically targets mosquitoes resting on walls, and in few cases, roofs and ceilings, using contact insecticides. Unfortunately, little attention is paid to where malaria vectors actually rest indoors, and how such knowledge could be used to improve IRS. This study investigated preferred resting surfaces of two major malaria vectors, Anopheles funestus and Anopheles arabiensis, inside four common house types in rural south-eastern Tanzania.
Methods:
The assessment was done inside 80 houses including: 20 with thatched roofs and mud walls, 20 with thatched roofs and un-plastered brick walls, 20 with metal roofs and un-plastered brick walls, and 20 with metal roofs and plastered brick walls, across four villages. In each house, resting mosquitoes were sampled in mornings (6 a.m.–8 a.m.), evenings (6 p.m.–8 p.m.) and at night (11 p.m.–12.00 a.m.) using Prokopack aspirators from multiple surfaces (walls, undersides of roofs, floors, furniture, utensils, clothing, curtains and bed nets).
Results:
Overall, only 26% of An. funestus and 18% of An. arabiensis were found on walls. In grass-thatched houses, 33–55% of An. funestus and 43–50% of An. arabiensis rested under roofs, while in metal-roofed houses, only 16–20% of An. funestus and 8–30% of An. arabiensis rested under roofs. Considering all data together, approximately 40% of mosquitoes rested on surfaces not typically targeted by IRS, i.e. floors, furniture, utensils, clothing and bed nets. These proportions were particularly high in metal-roofed houses (47–53% of An. funestus; 60–66% of An. arabiensis).
Conclusion:
While IRS typically uses contact insecticides to target adult mosquitoes on walls, and occasionally roofs and ceilings, significant proportions of vectors rest on surfaces not usually sprayed. This gap exceeds one-third of malaria mosquitoes in grass-thatched houses, and can reach two-thirds in metal-roofed houses. Where field operations exclude roofs during IRS, the gaps can be much greater. In conclusion, there is need for locally-obtained data on mosquito resting behaviours and how these influence the overall impact and costs of IRS. This study also emphasizes the need for alternative approaches, e.g. house screening, which broadly tackle mosquitoes beyond areas reachable by IRS and ITNs
Plasmodium falciparum parasitaemia and clinical malaria among school children living in a high transmission setting in western Kenya.
BACKGROUND: Malaria among school children is increasingly receiving attention, yet the burden of malaria in this age group is poorly defined. This study presents data on malaria morbidity among school children in Bungoma county, western Kenya. METHOD: This study investigated the burden and risk factors of Plasmodium falciparum infection, clinical malaria, and anaemia among 2346 school children aged 5-15 years, who were enrolled in an individually randomized trial evaluating the effect of anthelmintic treatment on the risks of malaria. At baseline, children were assessed for anaemia and nutritional status and information on household characteristics was collected. Children were followed-up for 13 months to assess the incidence of clinical malaria by active detection, and P. falciparum infection and density evaluated using repeated cross-sectional surveys over 15 months. RESULTS: On average prevalence of P. falciparum infection was 42% and ranged between 32 and 48% during the five cross-sectional surveys. Plasmodium falciparum prevalence was significantly higher among boys than girls. The overall incidence of clinical malaria was 0.26 episodes per person year (95% confidence interval, 0.24-0.29) and was significantly higher among girls (0.23 versus 0.31, episodes per person years). Both infection prevalence and clinical disease varied by season. In multivariable analysis, P. falciparum infection was associated with being male, lower socioeconomic status and stunting. The risk of clinical malaria was associated with being female. CONCLUSION: These findings show that the burden of P. falciparum parasitaemia, clinical malaria and anaemia among school children is not insignificant, and suggest that malaria control programmes should be expanded to include this age group
SARS-CoV-2 viral shedding and transmission dynamics : implications of WHO COVID-19 discharge guidelines
This work was supported through the Alliance for Accelerating Excellence in Science in Africa (AESA), a funding, agenda-setting, programme management initiative of the African Academy of Sciences (AAS), the African- Union Development Agency (AUDA-NEPAD), founding and funding global partners and through a resolution of the summit of African Union Heads of Governments.The evolving nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has necessitated periodic revisions of COVID-19 patient treatment and discharge guidelines. Since the identification of the first COVID-19 cases in November 2019, the World Health Organization (WHO) has played a crucial role in tackling the country-level pandemic preparedness and patient management protocols. Among others, the WHO provided a guideline on the clinical management of COVID-19 patients according to which patients can be released from isolation centers on the 10th day following clinical symptom manifestation, with a minimum of 72 additional hours following the resolution of symptoms. However, emerging direct evidence indicating the possibility of viral shedding 14 days after the onset of symptoms called for evaluation of the current WHO discharge recommendations. In this review article, we carried out comprehensive literature analysis of viral shedding with specific focus on the duration of viral shedding and infectivity in asymptomatic and symptomatic (mild, moderate, and severe forms) COVID-19 patients. Our literature search indicates that even though, there are specific instances where the current protocols may not be applicable ( such as in immune-compromised patients there is no strong evidence to contradict the current WHO discharge criteria.Publisher PDFPeer reviewe
Using a miniaturized double-net trap (DN-Mini) to assess relationships between indoor–outdoor biting preferences and physiological ages of two malaria vectors, Anopheles arabiensis and Anopheles funestus
Background:
Effective malaria surveillance requires detailed assessments of mosquitoes biting indoors, where interventions such as insecticide-treated nets work best, and outdoors, where other interventions may be required. Such assessments often involve volunteers exposing their legs to attract mosquitoes [i.e., human landing catches (HLC)], a procedure with significant safety and ethical concerns. Here, an exposure-free, miniaturized, double-net trap (DN-Mini) is used to assess relationships between indoor–outdoor biting preferences of malaria vectors, Anopheles arabiensis and Anopheles funestus, and their physiological ages (approximated by parity and insemination states).
Methods:
The DN-Mini is made of UV-resistant netting on a wooden frame and PVC base. At 100 cm × 60 cm × 180 cm, it fits indoors and outdoors. It has a protective inner chamber where a volunteer sits and collects host-seeking mosquitoes entrapped in an outer chamber. Experiments were conducted in eight Tanzanian villages using DN-Mini to: (a) estimate nightly biting and hourly biting proportions of mosquitoes indoors and outdoors; (b) compare these proportions to previous estimates by HLC in same villages; and, (c) compare distribution of parous (proxy for potentially infectious) and inseminated mosquitoes indoors and outdoors.
Results:
More than twice as many An. arabiensis were caught outdoors as indoors (p < 0.001), while An. funestus catches were marginally higher indoors than outdoors (p = 0.201). Anopheles arabiensis caught outdoors also had higher parity and insemination proportions than those indoors (p < 0.001), while An. funestus indoors had higher parity and insemination than those outdoors (p = 0.04). Observations of indoor-biting and outdoor-biting proportions, hourly biting patterns and overall species diversities as measured by DN-Mini, matched previous HLC estimates.
Conclusions:
Malaria vectors that are behaviourally adapted to bite humans outdoors also have their older, potentially infectious sub-populations concentrated outdoors, while those adapted to bite indoors have their older sub-populations concentrated indoors. Here, potentially infectious An. arabiensis more likely bite outdoors than indoors, while potentially infectious An. funestus more likely bite indoors. These observations validate previous evidence that even outdoor-biting mosquitoes regularly enter houses when young. They also demonstrate efficacy of DN-Mini for measuring indoor–outdoor biting behaviours of mosquitoes, their hourly biting patterns and epidemiologically relevant parameters, e.g., parity and insemination status, without exposure to volunteers. The trap is easy-to-use, easy-to-manufacture and affordable (prototypes cost ~ 100 US$/unit)
Detection of Anopheles stephensi mosquitoes by molecular surveillance, Kenya
The Anopheles stephensi mosquito is an invasive malaria vector recently reported in Djibouti, Ethiopia, Sudan, Somalia, Nigeria, and Ghana. The World Health Organization has called on countries in Africa to increase surveillance efforts to detect and report this vector and institute appropriate and effective control mechanisms. In Kenya, the Division of National Malaria Program conducted entomological surveillance in counties at risk for An. stephensi mosquito invasion. In addition, the Kenya Medical Research Institute conducted molecular surveillance of all sampled Anopheles mosquitoes from other studies to identify An. stephensi mosquitoes. We report the detection and confirmation of An. stephensi mosquitoes in Marsabit and Turkana Counties by using endpoint PCR and morphological and sequence identification. We demonstrate the urgent need for intensified entomological surveillance in all areas at risk for An. stephensi mosquito invasion, to clarify its occurrence and distribution and develop tailored approaches to prevent further spread
The Anopheles coluzzii range extends into Kenya: detection, insecticide resistance profiles and population genetic structure in relation to conspecific populations in West and Central Africa
Background
Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. The current study sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well as describe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzii populations.
Methods
Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing (WGS) data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Comparisons were made with An. coluzzii cohorts from West and Central Africa.
Results
This study reports the detection of An. coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points from which samples were analyzed and its presence confirmed through taxonomic analysis. Additionally, there was a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies up to 64%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya.
Conclusions
These findings emphasize the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches
SARS-CoV-2 Viral Shedding and Transmission Dynamics: Implications of WHO COVID-19 Discharge Guidelines
The evolving nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has necessitated periodic revisions of COVID-19 patient treatment and discharge guidelines. Since the identification of the first COVID-19 cases in November 2019, the World Health Organization (WHO) has played a crucial role in tackling the country-level pandemic preparedness and patient management protocols. Among others, the WHO provided a guideline on the clinical management of COVID-19 patients according to which patients can be released from isolation centers on the 10th day following clinical symptom manifestation, with a minimum of 72 additional hours following the resolution of symptoms. However, emerging direct evidence indicating the possibility of viral shedding 14 days after the onset of symptoms called for evaluation of the current WHO discharge recommendations. In this review article, we carried out comprehensive literature analysis of viral shedding with specific focus on the duration of viral shedding and infectivity in asymptomatic and symptomatic (mild, moderate, and severe forms) COVID-19 patients. Our literature search indicates that even though, there are specific instances where the current protocols may not be applicable ( such as in immune-compromised patients there is no strong evidence to contradict the current WHO discharge criteria
Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania
Background:
In rural south-eastern Tanzania, Anopheles funestus is a major malaria vector, and has been implicated in nearly 90% of all infective bites. Unfortunately, little is known about the natural ecological requirements and survival strategies of this mosquito species.
Methods:
Potential mosquito aquatic habitats were systematically searched along 1000 m transects from the centres of six villages in south-eastern Tanzania. All water bodies were geo-referenced, characterized and examined for presence of Anopheles larvae using standard 350 mLs dippers or 10 L buckets. Larvae were collected for rearing, and the emergent adults identified to confirm habitats containing An. funestus.
Results:
One hundred and eleven habitats were identified and assessed from the first five villages (all < 300 m altitude). Of these, 36 (32.4%) had An. funestus co-occurring with other mosquito species. Another 47 (42.3%) had other Anopheles species and/or culicines, but not An. funestus, and 28 (25.2%) had no mosquitoes. There were three main habitat types occupied by An. funestus, namely: (a) small spring-fed pools with well-defined perimeters (36.1%), (b) medium-sized natural ponds retaining water most of the year (16.7%), and (c) slow-moving waters along river tributaries (47.2%). The habitats generally had clear waters with emergent surface vegetation, depths > 0.5 m and distances < 100 m from human dwellings. They were permanent or semi-permanent, retaining water most of the year. Water temperatures ranged from 25.2 to 28.8 °C, pH from 6.5 to 6.7, turbidity from 26.6 to 54.8 NTU and total dissolved solids from 60.5 to 80.3 mg/L. In the sixth village (altitude > 400 m), very high densities of An. funestus were found along rivers with slow-moving clear waters and emergent vegetation.
Conclusion:
This study has documented the diversity and key characteristics of aquatic habitats of An. funestus across villages in south-eastern Tanzania, and will form an important basis for further studies to improve malaria control. The observations suggest that An. funestus habitats in the area can indeed be described as fixed, few and findable based on their unique characteristics. Future studies should investigate the potential of targeting these habitats with larviciding or larval source management to complement malaria control efforts in areas dominated by this vector species
Mosquito control by abatement programmes in the United States: perspectives and lessons for countries in sub-Saharan Africa.
Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA