406 research outputs found
Extensions of Simple Conceptual Graphs: the Complexity of Rules and Constraints
Simple conceptual graphs are considered as the kernel of most knowledge
representation formalisms built upon Sowa's model. Reasoning in this model can
be expressed by a graph homomorphism called projection, whose semantics is
usually given in terms of positive, conjunctive, existential FOL. We present
here a family of extensions of this model, based on rules and constraints,
keeping graph homomorphism as the basic operation. We focus on the formal
definitions of the different models obtained, including their operational
semantics and relationships with FOL, and we analyze the decidability and
complexity of the associated problems (consistency and deduction). As soon as
rules are involved in reasonings, these problems are not decidable, but we
exhibit a condition under which they fall in the polynomial hierarchy. These
results extend and complete the ones already published by the authors. Moreover
we systematically study the complexity of some particular cases obtained by
restricting the form of constraints and/or rules
Coronagraphic phase diversity: performance study and laboratory demonstration
The final performance of current and future instruments dedicated to
exoplanet detection and characterization (such as SPHERE on the European Very
Large Telescope, GPI on Gemini North, or future instruments on Extremely Large
Telescopes) is limited by uncorrected quasi-static aberrations. These
aberrations create long-lived speckles in the scientific image plane, which can
easily be mistaken for planets. Common adaptive optics systems require
dedicated components to perform wave-front analysis. The ultimate wave-front
measurement performance is thus limited by the unavoidable differential
aberrations between the wavefront sensor and the scientific camera. To reach
the level of detectivity required by high-contrast imaging, these differential
aberrations must be estimated and compensated for. In this paper, we
characterize and experimentally validate a wave-front sensing method that
relies on focal-plane data. Our method, called COFFEE (for COronagraphic
Focal-plane wave-Front Estimation for Exoplanet detection), is based on a
Bayesian approach, and it consists in an extension of phase diversity to
high-contrast imaging. It estimates the differential aberrations using only two
focal-plane coronagraphic images recorded from the scientific camera itself. In
this paper, we first present a thorough characterization of COFFEE's
performance by means of numerical simulations. This characterization is then
compared with an experimental validation of COFFEE using an in-house adaptive
optics bench and an apodized Roddier & Roddier phase mask coronagraph. An
excellent match between experimental results and the theoretical study is
found. Lastly, we present a preliminary validation of COFFEE's ability to
compensate for the aberrations upstream of a coronagraph.Comment: A&A accepte
Post processing of differential images for direct extrasolar planet detection from the ground
The direct imaging from the ground of extrasolar planets has become today a
major astronomical and biological focus. This kind of imaging requires
simultaneously the use of a dedicated high performance Adaptive Optics [AO]
system and a differential imaging camera in order to cancel out the flux coming
from the star. In addition, the use of sophisticated post-processing techniques
is mandatory to achieve the ultimate detection performance required. In the
framework of the SPHERE project, we present here the development of a new
technique, based on Maximum A Posteriori [MAP] approach, able to estimate
parameters of a faint companion in the vicinity of a bright star, using the
multi-wavelength images, the AO closed-loop data as well as some knowledge on
non-common path and differential aberrations. Simulation results show a 10^-5
detectivity at 5sigma for angular separation around 15lambda/D with only two
images.Comment: 12 pages, 6 figures, This paper will be published in the proceedings
of the conference Advances in Adaptive Optics (SPIE 6272), part of SPIE's
Astronomical Telescopes & Instrumentation, 24-31 May 2006, Orlando, F
Designable buried waveguides in sapphire by proton implantation
Buried and stacked planar as well as buried single and parallel channel waveguides are fabricated in sapphire by proton implantation. Good control of the implantation parameters provides excellent confinement of the guided light in each structure. Low propagation losses are obtained in fundamental-mode, buried channel waveguides without postimplantation annealing. Choice of the implantation parameters allows one to design mode shapes with different ellipticity and/or mode asymmetry in each orthogonal direction, thus demonstrating the versatility of the fabrication method. Horizontal and vertical parallelization is demonstrated for the design of one- or two-dimensional waveguide arrays in hard crystalline materials
Proton implanted sapphire planar and channel waveguides
We report low-order transverse-mode planar waveguides in sapphire fabricated for the first time by proton implantation. The waveguides show good guiding properties without post-implantation annealing. Channel waveguiding was achieved by polyimide strip-loading
High-order myopic coronagraphic phase diversity (COFFEE) for wave-front control in high-contrast imaging systems
The estimation and compensation of quasi-static aberrations is mandatory to
reach the ultimate performance of high-contrast imaging systems. COFFEE is a
focal plane wave-front sensing method that consists in the extension of phase
diversity to high-contrast imaging systems. Based on a Bayesian approach, it
estimates the quasi-static aberrations from two focal plane images recorded
from the scientific camera itself. In this paper, we present COFFEE's extension
which allows an estimation of low and high order aberrations with nanometric
precision for any coronagraphic device. The performance is evaluated by
realistic simulations, performed in the SPHERE instrument framework. We develop
a myopic estimation that allows us to take into account an imperfect knowledge
on the used diversity phase. Lastly, we evaluate COFFEE's performance in a
compensation process, to optimize the contrast on the detector, and show it
allows one to reach the 10^-6 contrast required by SPHERE at a few resolution
elements from the star. Notably, we present a non-linear energy minimization
method which can be used to reach very high contrast levels (better than 10^-7
in a SPHERE-like context)Comment: Accepted in Optics Expres
Sapphire planar waveguides fabricated by H+ ion beam implantation
1.1-MeV proton-implanted sapphire waveguides are investigated for the first time. Optical measurements show that the planar waveguides support low-order transverse-mode propagation with good guiding properties without the need to anneal the samples
Oblique Convergence in the Himalayas of Western Nepal Deduced from Preliminary Results of GPS Measurements
A GPS network consisting of 29 sites was installed in central and western Nepal, with measurements taken in 1995 and partial remeasurements in 1997. Data suggest 15 +/â5 mm/yr of N180° convergence between the Higher Himalayas and India, a result that is consistent with NâS shortening across the arcuate shape of the Nepalese Himalayas and an oblique underthrusting of the Indian crust below the High Himalayas of western Nepal. A 4 +/â3 mm/year EâW extension and deviation of the principal shortening axes are inferred east of 83°E, where Quaternary faults (DarmaâBari Gad fault system and Thakkhola graben) delineate a crustal wedge. This wedge is located on the SE projection of the Karakorum fault and may segment the Himalayan thrust belt. The convergence between the outer belt of western Nepal and India is less than 3 mm/yr, an attenuation consistent with creep on a dislocation locked beneath the Lesser Himalayas. A preliminary model suggests that this N 120°E striking dislocation is affected by a 19 mm/yr thrust component and a 7 mm/yr right lateral component
A different perspective on canonicity
One of the most interesting aspects of Conceptual Structures Theory is the notion of canonicity. It is also one of the most neglected: Sowa seems to have abandoned it in the new version of the theory, and most of what has been written on canonicity focuses on the generalization hierarchy of conceptual graphs induced by the canonical formation rules. Although there is a common intuition that a graph is canonical if it is "meaningful'', the original theory is somewhat unclear about what that actually means, in particular how canonicity is related to logic. This paper argues that canonicity should be kept a first-class notion of Conceptual Structures Theory, provides a detailed analysis of work done so far, and proposes new definitions of the conformity relation and the canonical formation rules that allow a clear separation between canonicity and truth
On the k-Boundedness for Existential Rules
The chase is a fundamental tool for existential rules. Several chase variants
are known, which differ on how they handle redundancies possibly caused by the
introduction of nulls. Given a chase variant, the halting problem takes as
input a set of existential rules and asks if this set of rules ensures the
termination of the chase for any factbase. It is well-known that this problem
is undecidable for all known chase variants. The related problem of boundedness
asks if a given set of existential rules is bounded, i.e., whether there is a
predefined upper bound on the number of (breadth-first) steps of the chase,
independently from any factbase. This problem is already undecidable in the
specific case of datalog rules. However, knowing that a set of rules is bounded
for some chase variant does not help much in practice if the bound is unknown.
Hence, in this paper, we investigate the decidability of the k-boundedness
problem, which asks whether a given set of rules is bounded by an integer k. We
prove that k-boundedness is decidable for three chase variants, namely the
oblivious, semi-oblivious and restricted chase.Comment: 20 pages, revised version of the paper published at RuleML+RR 201
- âŠ