1,617 research outputs found
A novel locus for Meckel-Gruber syndrome, MKS3, maps to chromosome 8q24
Meckel-Gruber syndrome (MKS), the most common monogenic cause of neural tube defects, is an autosomal recessive disorder characterised by a combination of renal cysts and variably associated features, including developmental anomalies of the central nervous system (typically encephalcoele), hepatic ductal dysplasia and cysts, and polydactyly. Locus heterogeneity has been demonstrated by the mapping of the MKS1 locus to 17q21-24 in Finnish kindreds, and of MKS2 to 11q13 in North African-Middle Eastern cohorts. In the present study, we have investigated the genetic basis of MKS in eight consanguineous kindreds, originating from the Indian sub-continent, that do not show linkage to either MKS1 or MKS2. We report the localisation of a third MKS locus (MKS3) to chromosome 8q24 in this cohort by a genome-wide linkage search using autozygosity mapping. We identified a 26-cM region of autozygosity between D8S586 and D8S1108 with a maximum cumulative two-point LOD score at D8S1179 (Z(max)=3.04 at theta=0.06). A heterogeneity test provided evidence of one unlinked family. Exclusion of this family from multipoint analysis maximised the cumulative multipoint LOD score at locus D8S1128 (Z(max)=5.65). Furthermore, a heterozygous SNP in DDEF1, a putative candidate gene, suggested that MKS3 mapped within a 15-cM interval. Comparison of the clinical features of MKS3-linked cases with reports of MKS1- and MKS2-linked kindreds suggests that polydactyly (and possibly encephalocele) appear less common in MKS3-linked families
Heterogeneity within AML with CEBPA mutations; only CEBPA double mutations, but not single CEBPA mutations are associated with favourable prognosis
CCAAT/enhancer binding protein alpha (CEBPA) mutations in AML are associated with favourable prognosis and are divided into N- and C-terminal mutations. The majority of AML patients have both types of mutations. We assessed the prognostic significance of single (n=7) and double (n=12) CEBPA mutations among 224 AML patients. Double CEBPA mutations conferred a decisively favourable overall (P=0.006) and disease-free survival (P=0.013). However, clinical outcome of patients with single CEBPA mutations was not different from CEBPA wild-type patients. In a multivariable analysis, only double – but not single – CEBPA mutations were identified as independent prognostic factors. These findings indicate heterogeneity within AML patients with CEBPA mutations
B cell immune profiles in dysbiotic vermiform appendixes of pancreatic cancer patients
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid tumors and is resistant to immunotherapy. B cells play an essential role in PDAC progression and immune responses, both locally and systemically. Moreover, increasing evidence suggests that microbial compositions inside the tumor, as well as in the oral cavity and the gut, are important factors in shaping the PDAC immune landscape. However, the gut-associated lymphoid tissue (GALT) has not previously been explored in PDAC patients. In this study, we analyzed healthy vermiform appendix (VA) from 20 patients with PDAC and 32 patients with colon diseases by gene expression immune profiling, flow cytometry analysis, and microbiome sequencing. We show that the VA GALT of PDAC patients exhibits markers of increased inflammation and cytotoxic cell activity. In contrast, B cell function is decreased in PDAC VA GALT based on gene expression profiling; B cells express significantly fewer MHC class II surface receptors, whereas plasma cells express the immune checkpoint molecule HLA-G. Additionally, the vermiform appendix microbiome of PDAC patients is enriched with Klebsiella pneumoniae, Bifidobacterium animalis, and Adlercreutzia equolifaciens, while certain commensals are depleted. Our findings may suggest impaired B cell function within the GALT of PDAC patients, which could potentially be linked to microbial dysbiosis. Additional investigations are imperative to validate our observations and explore these potential targets of future therapies.</p
B cell immune profiles in dysbiotic vermiform appendixes of pancreatic cancer patients
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid tumors and is resistant to immunotherapy. B cells play an essential role in PDAC progression and immune responses, both locally and systemically. Moreover, increasing evidence suggests that microbial compositions inside the tumor, as well as in the oral cavity and the gut, are important factors in shaping the PDAC immune landscape. However, the gut-associated lymphoid tissue (GALT) has not previously been explored in PDAC patients. In this study, we analyzed healthy vermiform appendix (VA) from 20 patients with PDAC and 32 patients with colon diseases by gene expression immune profiling, flow cytometry analysis, and microbiome sequencing. We show that the VA GALT of PDAC patients exhibits markers of increased inflammation and cytotoxic cell activity. In contrast, B cell function is decreased in PDAC VA GALT based on gene expression profiling; B cells express significantly fewer MHC class II surface receptors, whereas plasma cells express the immune checkpoint molecule HLA-G. Additionally, the vermiform appendix microbiome of PDAC patients is enriched with Klebsiella pneumoniae, Bifidobacterium animalis, and Adlercreutzia equolifaciens, while certain commensals are depleted. Our findings may suggest impaired B cell function within the GALT of PDAC patients, which could potentially be linked to microbial dysbiosis. Additional investigations are imperative to validate our observations and explore these potential targets of future therapies.</p
IgG4-related diseases: state of the art on clinical practice guidelines
Immunoglobulin G4-related diseases (IgG4-RD) are a group of chronic relapsing-remitting inflammatory conditions, characterised by tissue infiltration with lymphocytes and IgG4-secreting plasma cells, fibrosis and a usually favourable response to steroids. In this narrative review, we summarise the results of a systematic literature research, which was performed as part of the European Reference Network ReCONNET, aimed at evaluating existing clinical practice guidelines (CPGs) and recommendations in IgG4-RD. From 167 publications initially obtained from a systematic literature search, only one was identified as a systematic multispecialist, evidence-based, consensus guidance statement on diagnosis and treatment of IgG4-RD, which may be recommended for use as CPG in IgG4-RD. With the recognition of a limited evidence based in this increasingly recognised disease, the group discussion has identified the following unmet needs: lack of shared classification criteria, absence of formal guidelines on diagnosis, no evidence-based therapeutic recommendations and lack of activity and damage indices. Areas of unmet needs include the difficulties in diagnosis, management and monitoring and the scarcity of expert centre
Spacetimes for λ-deformations
We examine a recently proposed class of integrable deformations to two-dimensional conformal field theories. These {\lambda}-deformations interpolate between a WZW model and the non-Abelian T-dual of a Principal Chiral Model on a group G or, between a G/H gauged WZW model and the non-Abelian T-dual of the geometric coset G/H. {\lambda}-deformations have been conjectured to represent quantum group q-deformations for the case where the deformation parameter is a root of unity. In this work we show how such deformations can be given an embedding as full string backgrounds whose target spaces satisfy the equations of type-II supergravity. One illustrative example is a deformation of the Sl(2,R)/U(1) black-hole CFT. A further example interpolates between the SU(2)×SU(2)SU(2)×SL(2,R)×SL(2,R)SL(2,R)×U(1)4 gauged WZW model and the non-Abelian T-dual of AdS3×S3×T4 supported with Ramond flux
Allele-Specific Impairment of GJB2 Expression by GJB6 Deletion del(GJB6-D13S1854)
Mutations in the GJB2 gene, which encodes connexin 26, are a frequent cause of congenital non-syndromic sensorineural hearing loss. Two large deletions, del(GJB6-D13S1830) and del(GJB6-D13S1854), which truncate GJB6 (connexin 30), cause hearing loss in individuals homozygous, or compound heterozygous for these deletions or one such deletion and a mutation in GJB2. Recently, we have demonstrated that the del(GJB6-D13S1830) deletion contributes to hearing loss due to an allele-specific lack of GJB2 mRNA expression and not as a result of digenic inheritance, as was postulated earlier. In the current study we investigated the smaller del(GJB6-D13S1854) deletion, which disrupts the expression of GJB2 at the transcriptional level in a manner similar to the more common del(GJB6-D13S1830) deletion. Interestingly, in the presence of this deletion, GJB2 expression remains minimally but reproducibly present. The relative allele-specific expression of GJB2 was assessed by reverse-transcriptase PCR and restriction digestions in three probands who were compound heterozygous for a GJB2 mutation and del(GJB6-D13S1854). Each individual carried a different sequence variant in GJB2. All three individuals expressed the mutated GJB2 allele in trans with del(GJB6-D13S1854), but expression of the GJB2 allele in cis with the deletion was almost absent. Our study clearly corroborates the hypothesis that the del(GJB6-D13S1854), similar to the larger and more common del(GJB6-D13S1830), removes (a) putative cis-regulatory element(s) upstream of GJB6 and narrows down the region of location
- …