11 research outputs found

    Of Mutualism and Migration: Will Interactions with Novel Ericoid Mycorrhizal Communities Help or Hinder Northward Rhododendron Range Shifts?

    Get PDF
    Rapid climate change imperils many small-ranged endemic species as the climate envelopes of their native ranges shift poleward. In addition to abiotic changes, biotic interactions are expected to play a critical role in plant species’ responses. Below-ground interactions are of particular interest given increasing evidence of microbial effects on plant performance and the prevalence of mycorrhizal mutualisms. We used greenhouse mesocosm experiments to investigate how natural northward migration/assisted colonization of Rhododendron catawbiense, a small-ranged endemic eastern U.S. shrub, might be influenced by novel below-ground biotic interactions from soils north of its native range, particularly with ericoid mycorrhizal fungi (ERM). We compared germination, leaf size, survival, and ERM colonization rates of endemic R. catawbiense and widespread R. maximum when sown on different soil inoculum treatments: a sterilized control; a non-ERM biotic control; ERM communities from northern R. maximum populations; and ERM communities collected from the native range of R. catawbiense. Germination rates for both species when inoculated with congeners\u27 novel soils were significantly higher than when inoculated with conspecific soils, or non-mycorrhizal controls. Mortality rates were unaffected by treatment, suggesting that the unexpected reciprocal effect of each species’ increased establishment in association with heterospecific ERM could have lasting demographic effects. Our results suggest that seedling establishment of R. catawbiense in northern regions outside its native range could be facilitated by the presence of extant congeners like R. maximum and their associated soil microbiota. These findings have direct relevance to the potential for successful poleward migration or future assisted colonization efforts

    Investigating the nature of mutualisms between Rhododendron seedlings and local versus novel communities of ericoid mycorrhizal fungi

    No full text
    Anthropogenic climate change is predicted to imperil many species as the climatic conditions their ranges currently occupy shift poleward rapidly in coming decades. Models forecasting these range shifts focus almost exclusively on change in abiotic factors, although it is expected that biotic interactions will also play a significant, but often unpredictable, role in species’ responses. In this study I investigated the performance of a narrow endemic Appalachian plant Rhododendron catawbiense (Catawba Rosebay) to explore how seed germination and establishment might be influenced by the presence of local versus novel microbial and fungal soil communities, including specialized ericoid mycorrhizae thought to be crucial to the success of many plants in the Ericaceae. Through a series of greenhouse mesocosm experiments, we compared germination rates of R. catawbiense when sown on three soil inoculum types: i) neutral, non-mycorrhizal forest soil, ii) ericoid mycorrhizal fungi (ERMF) communities from beneath the widespread Rhododendron maximum (Great Laurel) in a predicted area of northern range shift for R. catawbiense in Massachusetts, and iii) ERMF communities collected from beneath R. catawbiense within its native range in West Virginia. Across this experiment, and earlier trials, I repeatedly found significant evidence of higher germination rates (P \u3c 0.01) for seeds sown on soils inoculated with novel ERMF communities collected from beneath the other Rhododendron species, but no difference between the each species’ local ERMF inoculum and the neutral forest soil treatments. These results suggest interesting dynamics at play in the mutualistic interaction between Rhododendron seeds and their mycorrhizal fungi partners, possibly including overexploitation of novel partners, but the direction of this interaction is not yet fully understood. The results also strongly suggest that R. catawbiense could successfully establish mutualisms with novel ERMF in areas outside of its native range, and that the presence of congeneric Rhododendron species might even facilitate establishment

    Phylogenomics and the rise of the angiosperms

    Get PDF
    International audienceAngiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods 1,2 . A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome 3,4 . Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins 5–7 . However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes 8 . This 15-fold increase in genus-level sampling relative to comparable nuclear studies 9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade

    Phylogenomics and the rise of the angiosperms

    No full text
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade

    Femoral Neck Shortening After Hip Fracture Fixation Is Associated With Inferior Hip Function : Results From the FAITH Trial

    No full text

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health

    Low Carbohydrate versus Isoenergetic Balanced Diets for Reducing Weight and Cardiovascular Risk: A Systematic Review and Meta-Analysis

    No full text
    corecore