18,998 research outputs found
Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering
In the literature on electron-phonon scatterings very often a
phenomenological expression for the transition matrix element is used which was
derived in the textbooks of Ashcroft/Mermin and of Czycholl. There are various
steps in the derivation of this expression. In the textbooks in part different
arguments have been used in these steps, but the final result is the same. In
the present paper again slightly different arguments are used which motivate
the procedure in a more intuitive way. Furthermore, we generalize the
phenomenological expression to describe the dependence of the matrix elements
on the spin state of the initial and final electron state
Gluon Distribution Functions for Very Large Nuclei at Small Transverse Momentum
We show that the gluon distribution function for very large nuclei may be
computed for small transverse momentum as correlation functions of an
ultraviolet finite two dimensional Euclidean field theory. This computation is
valid to all orders in the density of partons per unit area, but to lowest
order in . The gluon distribution function is proportional to ,
and the effect of the finite density of partons is to modify the dependence on
transverse momentum for small transverse momentum.Comment: TPI--MINN--93--52/T, NUC--MINN--93--28/T, UMN--TH--1224/93, LaTex, 11
page
Feasibility and clinical outcomes when using practice guidelines for evaluation of fever in returning travelers and migrants : a validation study.
BACKGROUND: Practice guidelines for examining febrile patients presenting upon returning from the tropics were developed to assist primary care physicians in decision making. Because of the low level of evidence available in this field, there was a need to validate them and assess their feasibility in the context they have been designed for.
OBJECTIVES: The objectives of the study were to (1) evaluate physicians' adherence to recommendations; (2) investigate reasons for non-adherence; and (3) ensure good clinical outcome of patients, the ultimate goal being to improve the quality of the guidelines, in particular to tailor them for the needs of the target audience and population.
METHODS: Physicians consulting the guidelines on the Internet (www.fevertravel.ch) were invited to participate in the study. Navigation through the decision chart was automatically recorded, including diagnostic tests performed, initial and final diagnoses, and clinical outcomes. The reasons for non-adherence were investigated and qualitative feedback was collected.
RESULTS: A total of 539 physician/patient pairs were included in this study. Full adherence to guidelines was observed in 29% of the cases. Figure-specific adherence rate was 54.8%. The main reasons for non-adherence were as follows: no repetition of malaria tests (111/352) and no presumptive antibiotic treatment for febrile diarrhea (64/153) or abdominal pain without leukocytosis (46/101). Overall, 20% of diversions from guidelines were considered reasonable because there was an alternative presumptive diagnosis or the symptoms were mild, which means that the corrected adherence rate per case was 40.6% and corrected adherence per figure was 61.7%. No death was recorded and all complications could be attributed to the underlying illness rather than to adherence to guidelines.
CONCLUSIONS: These guidelines proved to be feasible, useful, and leading to good clinical outcomes. Almost one third of physicians strictly adhered to the guidelines. Other physicians used the guidelines not to forget specific diagnoses but finally diverged from the proposed attitudes. These diversions should be scrutinized for further refinement of the guidelines to better fit to physician and patient needs
Inspiral-merger-ringdown waveforms for black-hole binaries with non-precessing spins
We present the first analytical inspiral-merger-ringdown gravitational
waveforms from binary black holes (BBHs) with non-precessing spins, that is
based on a description of the late-inspiral, merger and ringdown in full
general relativity. By matching a post-Newtonian description of the inspiral to
a set of numerical-relativity simulations, we obtain a waveform family with a
conveniently small number of physical parameters. These waveforms will allow us
to detect a larger parameter space of BBH coalescence, including a considerable
fraction of precessing binaries in the comparable-mass regime, thus
significantly improving the expected detection rates.Comment: To appear in Phys. Rev. Lett. Significant new results. One figure
removed due to page limitatio
Large Rapidity Gap Processes in Proton-Nucleus Collisions
The cross sections for a variety of channels of proton-nucleus interaction
associated with large gaps in rapidity are calculated within the Glauber-Gribov
theory. We found inelastic shadowing corrections to be dramatically enhanced
for such events. We employ the light-cone dipole formalism which allows to
calculate the inelastic corrections to all orders of the multiple interaction.
Although Gribov corrections are known to make nuclear matter more transparent,
we demonstrate that in some instances they lead to an opaqueness. Numerical
calculations are performed for the energies of the HERA-B experiment, and the
RHIC-LHC colliders.Comment: 19 page
\pi N and \eta p deexcitation channels of the N^* and \Delta baryonic resonances between 1470 and 1680 MeV
Two reactions, pp->ppX and pp->p\pi^+X, are used to study the 1.47<M<1.68 GeV
baryonic mass range. Three different final states are considered in the
invariant masses: N^* or \Delta^+, p\pi^0, and p\eta. The last two channels are
defined by software cuts applied to the missing mass of the first reaction.
Several narrow structures are extracted with widths \sigma(\Gamma) varying
between 3 and 9 MeV. Some structures are observed in one channel but not in
others. Such nonobservation may be due either to the spectrometer momenta
limits or to the physics (e.g. no such disintegration channel is allowed from
the narrow state considered).
We tentatively conclude that the broad Particle Data Group (PDG) baryonic
resonances N(1520)D13, N(1535)S11, Delta(1600)P33, and N(1675)D15 are
collective states built from several narrow and weakly excited resonances, each
having a (much) smaller width than the one reported by PDG.Comment: 29 pages, plus 50 (.png) figures Will be published in a slightly
reduced size in Phys. Rev.
Long-Term Visual Object Tracking Benchmark
We propose a new long video dataset (called Track Long and Prosper - TLP) and
benchmark for single object tracking. The dataset consists of 50 HD videos from
real world scenarios, encompassing a duration of over 400 minutes (676K
frames), making it more than 20 folds larger in average duration per sequence
and more than 8 folds larger in terms of total covered duration, as compared to
existing generic datasets for visual tracking. The proposed dataset paves a way
to suitably assess long term tracking performance and train better deep
learning architectures (avoiding/reducing augmentation, which may not reflect
real world behaviour). We benchmark the dataset on 17 state of the art trackers
and rank them according to tracking accuracy and run time speeds. We further
present thorough qualitative and quantitative evaluation highlighting the
importance of long term aspect of tracking. Our most interesting observations
are (a) existing short sequence benchmarks fail to bring out the inherent
differences in tracking algorithms which widen up while tracking on long
sequences and (b) the accuracy of trackers abruptly drops on challenging long
sequences, suggesting the potential need of research efforts in the direction
of long-term tracking.Comment: ACCV 2018 (Oral
Fluctuations, Saturation, and Diffractive Excitation in High Energy Collisions
Diffractive excitation is usually described by the Good--Walker formalism for
low masses, and by the triple-Regge formalism for high masses. In the
Good--Walker formalism the cross section is determined by the fluctuations in
the interaction. In this paper we show that by taking the fluctuations in the
BFKL ladder into account, it is possible to describe both low and high mass
excitation by the Good--Walker mechanism. In high energy collisions the
fluctuations are strongly suppressed by saturation, which implies that pomeron
exchange does not factorise between DIS and collisions. The Dipole Cascade
Model reproduces the expected triple-Regge form for the bare pomeron, and the
triple-pomeron coupling is estimated.Comment: 20 pages, 12 figure
The initial gluon multiplicity in heavy ion collisions
The initial gluon multiplicity per unit area per unit rapidity, dN/L^2/d\eta,
in high energy nuclear collisions, is equal to f_N (g^2\mu L) (g^2\mu)^2/g^2,
with \mu^2 proportional to the gluon density per unit area of the colliding
nuclei. For an SU(2) gauge theory, we compute f_N (g^2\mu L)=0.14\pm 0.01 for a
wide range in g^2\mu L. Extrapolating to SU(3), we predict dN/L^2/d\eta for
values of g^2\mu L in the range relevant to the Relativistic Heavy Ion Collider
and the Large Hadron Collider. We compute the initial gluon transverse momentum
distribution, dN/L^2/d^2 k_\perp, and show it to be well behaved at low
k_\perp.Comment: LaTex 10 pgs., 3 figure
- …