37 research outputs found
Isolated posterior fossa involvement of progressive multifocal leucoencephalopathy in HIV : a case series with review of the literature
Progressive multifocal leucoencephalopathy (PML) is a progressive demyelinating
condition resulting from infection with the John Cunningham virus and precipitated
by immunocompromised states. The HIV pandemic, especially in sub-Saharan Africa, has
resulted in an increase in the number of patients presenting with PML. Imaging plays an
important role in diagnosis and the distribution of the disease is predominantly supratentorial.
Isolated posterior fossa involvement is a rare finding with very few cases described in the
literature. We present the largest case series of patients described in the literature, with isolated
posterior fossa involvement of PML, in HIV-positive patients.http://www.sajr.org.zaam2018NeurologyRadiolog
A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa
[Figure: see text]
A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.
The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Isolated posterior fossa involvement of progressive multifocal leucoencephalopathy in HIV: A case series with review of the literature
Progressive multifocal leucoencephalopathy (PML) is a progressive demyelinating condition resulting from infection with the John Cunningham virus and precipitated by immunocompromised states. The HIV pandemic, especially in sub-Saharan Africa, has resulted in an increase in the number of patients presenting with PML. Imaging plays an important role in diagnosis and the distribution of the disease is predominantly supratentorial. Isolated posterior fossa involvement is a rare finding with very few cases described in the literature. We present the largest case series of patients described in the literature, with isolated posterior fossa involvement of PML, in HIV-positive patients
Nitrogen Mineralization of Selected Organic Materials and Their Combined Effects with Nitrogen Fertilizer on Spinach Yield
A 2-month incubation study was carried out using two soil types to determine the nitrogen mineralization of different inorganic–organic amendments. The following seven treatments (Ts) were established: T1 = control (no amendment), T2 = 5 g of dry algae per kg of soil (100%DA), T3 = 136 g of agri-mat per kg of soil (100%GAM), T4 = 61 g of ground grass per kg of soil (100%GG), T5 = 0.6 g of N using lime–ammonium nitrate (LAN) + 2.5 g of dry algae (50%DA50NF), T6 = 50%GAM50NF, and T7 = 50%GG50NF. Three samples per treatment were obtained at 0, 3, 7, 15, 30, 45, and 60 days for N mineral determination. A 2-month glasshouse experiment was established afterward with the following five treatments: T1 = control, T2 = 50%DA, T3 = 50%GAM, T4 = 50%GG, and T5 = 100 NF. The results indicate that nitrogen mineralization was significantly higher in organic–inorganic amendments compared with singular organic amendments. The percentage differences ranged from 157% to 195%. The 50%DA treatment increased the spinach yield by 20.6% in sandy loam and 36.5% in loam soil. It is difficult to fully recommend the 50%DA treatment without field-scale evaluation, but it is a promising option to be considered
Innovative Pro-Smallholder Farmers’ Permanent Mulch for Better Soil Quality and Food Security Under Conservation Agriculture
Soil degradation is the greatest threat to agricultural production globally. The practice of applying or retaining crop residues in the field as mulch is imperative to prevent soil erosion, maintain soil quality and improve crop productivity. However, smallholder farmers resort to maximizing profit by removing crop residues after harvest to sell or use them as feed for livestock. Agrimats are innovative pro-smallholder farming mulching materials that are manufactured using cheap or freely available organic waste materials. These materials include forestry waste, grasses, etc., therefore allowing smallholder farmers to make more profit through improved crop productivity for better food security. The most notable attributes of agrimats include their ability to prevent soil erosion, increase and sustain soil organic matter, suppress weeds, and conserve soil moisture. Food security challenge can be addressed by adopting agrimat technology as a sustainable permanent soil cover to improve soil quality and crop productivity. Agrimat incorporation in conservation agriculture practice could produce more food from less input resources (chemical fertilizers, water, etc.) with minimal or no adverse effect on the environment. This study aims to advocate permanent soil cover using agrimat as an innovative pro-smallholder farmer technology to improve soil quality for better food security