19 research outputs found

    Irreversible Adsorption from Dilute Polymer Solutions

    Full text link
    We study irreversible polymer adsorption from dilute solutions theoretically. Universal features of the resultant non-equilibrium layers are predicted. Two cases are considered, distinguished by the value of the local monomer-surface sticking rate Q: chemisorption (very small Q) and physisorption (large Q). Early stages of layer formation entail single chain adsorption. While single chain physisorption times tau_ads are typically microsecs, for chemisorbing chains of N units we find experimentally accessible times tau_ads = Q^{-1} N^{3/5}, ranging from secs to hrs. We establish 3 chemisorption universality classes, determined by a critical contact exponent: zipping, accelerated zipping and homogeneous collapse. For dilute solutions, the mechanism is accelerated zipping: zipping propagates outwards from the first attachment, accelerated by occasional formation of large loops which nucleate further zipping. This leads to a transient distribution omega(s) \sim s^{-7/5} of loop lengths s up to a size s_max \approx (Q t)^{5/3} after time t. By tau_ads the entire chain is adsorbed. The outcome of the single chain adsorption episode is a monolayer of fully collapsed chains. Having only a few vacant sites to adsorb onto, late arriving chains form a diffuse outer layer. In a simple picture we find for both chemisorption and physisorption a final loop distribution Omega(s) \sim s^{-11/5} and density profile c(z) \sim z^{-4/3} whose forms are the same as for equilibrium layers. In contrast to equilibrium layers, however, the statistical properties of a given chain depend on its adsorption time; the outer layer contains many classes of chain, each characterized by different fraction of adsorbed monomers f. Consistent with strong physisorption experiments, we find the f values follow a distribution P(f) \sim f^{-4/5}.Comment: 18 pages, submitted to Eur. Phys. J. E, expanded discussion sectio

    Characterization of Polystyrene Latex Surfaces by the Adsorption of Rhodamine 6G

    No full text
    corecore