5 research outputs found
Phytochemical Compound Screening to Identify Novel Small Molecules against Dengue Virus: A Docking and Dynamics Study
The spread of the Dengue virus over the world, as well as multiple outbreaks of different serotypes, has resulted in a large number of deaths and a medical emergency, as no viable medications to treat Dengue virus patients have yet been found. In this paper, we provide an in silico virtual screening and molecular dynamics-based analysis to uncover efficient Dengue infection inhibitors. Based on a Google search and literature mining, a large phytochemical library was generated and employed as ligand molecules. In this investigation, the protein target NS2B/NS3 from Dengue was employed, and around 27 compounds were evaluated in a docking study. Phellodendroside (−63 kcal/mole), quercimeritrin (−59.5 kcal/mole), and quercetin-7-O-rutinoside (−54.1 kcal/mole) were chosen based on their binding free energy in MM-GBSA. The tested compounds generated numerous interactions at Lys74, Asn152, and Gln167 residues in the active regions of NS2B/NS3, which is needed for the protein’s inhibition. As a result, the stable mode of docked complexes is defined by various descriptors from molecular dynamics simulations, such as RMSD, SASA, Rg, RMSF, and hydrogen bond. The pharmacological properties of the compounds were also investigated, and no toxicity was found in computational ADMET properties calculations. As a result, this computational analysis may aid fellow researchers in developing innovative Dengue virus inhibitors
An in silico approach to develop potential therapies against Middle East Respiratory Syndrome Coronavirus (MERS-CoV)
A deadly respiratory disease Middle East Respiratory Syndrome (MERS) is caused by a perilous virus known as MERS-CoV, which has a severe impact on human health. Currently, there is no approved vaccine, prophylaxis, or antiviral therapeutics for preventing MERS-CoV infection. Due to its inexorable and integral role in the maturation and replication of the MERS-CoV virus, the 3C-like protease is unavoidly a viable therapeutic target. In this study, 2369 phytoconstituents were enlisted from Japanese medicinal plants, and these compounds were screened against 3C-like protease to identify feasible inhibitors. The best three compounds were identified as Kihadanin B, Robustaflavone, and 3-beta-O- (trans-p-Coumaroyl) maslinic acid, with binding energies of ā9.8, ā9.4, and ā9.2Ā kcal/mol, respectively. The top three potential candidates interacted with several active site residues in the targeted protein, including Cys145, Met168, Glu169, Ala171, and Gln192. The best three compounds were assessed by in silico technique to determine their drug-likeness properties, and they exhibited the least harmful features and the greatest drug-like qualities. Various descriptors, such as solvent-accessible surface area, root-mean-square fluctuation, root-mean-square deviation, hydrogen bond, and radius of gyration, validated the stability and firmness of the protein-ligand complexes throughout the 100ns molecular dynamics simulation. Moreover, the top three compounds exhibited better binding energy along with better stability and firmness than the inhibitor (Nafamostat), which was further confirmed by the binding free energy calculation. Therefore, this computational investigation could aid in the development of efficient therapeutics for life-threatening MERS-CoV infections
Missense mutations in spike protein of SARSāCoVā2 delta variant contribute to the alteration in viral structure and interaction with hACE2 receptor
Abstract Introduction Many of the global pandemics threaten human existence over the decades among which coronavirus disease (COVIDā19) is the newest exposure circulating worldwide. The RNA encoded severe acute respiratory syndrome coronavirus 2 (SARSāCoVā2) virus is referred as the pivotal agent of this deadly disease that induces respiratory tract infection by interacting host ACE2 receptor with its spike glycoprotein. Rapidly evolving nature of this virus modified into new variants helps in perpetrating immune escape and protection against host defense mechanism. Consequently, a new isolate, delta variant originated from India is spreading perilously at a higher infection rate. Methods In this study, we focused to understand the conformational and functional significance of the missense mutations found in the spike glycoprotein of SARSāCoVā2 delta variant performing different computational analysis. Results From physiochemical analysis, we found that the acidic isoelectric point of the virus elevated to basic pH level due to the mutations. The targeted mutations were also found to change the interactive bonding pattern and conformational stability analyzed by the molecular dynamic's simulation. The molecular docking study also revealed that L452R and T478K mutations found in the RBD domain of delta variant spike protein contributed to alter interaction with the host ACE2 receptor. Conclusions Overall, this study provided insightful evidence to understand the morphological and attributive impact of the mutations on SARSāCoVā2 delta variant
Structural Characterization of a Novel Luciferase-Like-Monooxygenase from Pseudomonas meliae ā An in-Silico Approach: Structural characterization of luciferase-like-monooxygenase
Luciferase is a well-known oxidative enzyme that produces bioluminescence. The Pseudomonas meliae is a plant pathogen that causes wood to rot on nectarine and peach and possesses a luciferase-like monooxygenase. After activation, it produces bioluminescence, and the pathogenās bioluminescence is a visual indicator of contaminated plants. The present study aims to model and characterize the luciferase-like monooxygenase protein in P. meliae for its similarity to well-established luciferase. In this study, the luciferase-like monooxygenase from P. meliae infects chinaberry plants has been first modeled and then, studied by comparing it with existing known luciferase. In addition, the similarities between uncharacterized luciferase from P. meliae and the template from Geobacillus thermodenitrificans were analyzed. The results suggest that the absence of bioluminescence in P. meliae could be critical for the production of the luciferin substrate and the catalytic activity of the enzyme due to the evolutionary mutation in positions 138 and 311. The active site remains identical except for two amino acids. Therefore, mutation of the residues 138 and 311 in P. meliae Luciferase-like monooxygenase may restore luciferase light-emitting ability.
HIGHLIGHTS
Structural characterization of luciferase-like monooxygenase in P. meliae.
Bioluminescence can be used to evaluate antimicrobial efficacy by releasing light emissions.
Luciferase-like monooxygenase: a potential therapeutic candidate for clinical applications
Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs’s cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications