856 research outputs found

    Probing the Noncommutative Standard Model at Hadron Colliders

    Get PDF
    We study collider signals for the noncommutative extension of the standard model using the Seiberg-Witten maps for SU(3)_C x SU(2)_L x U(1)_Y to first order in the noncommutativity parameters theta_munu. In particular, we investigate the ensitivity of Z-gamma-production at the Tevatron and the LHC to the components of theta_munu. We discuss the range of validity of this approximation and estimate exclusion limits from a Monte Carlo simulation.Comment: 18 pages LaTeX, 23 figures. Slightly expanded introduction and additional references. Accepted for publication in Physical Review

    Noncommuting spherical coordinates

    Get PDF
    Restricting the states of a charged particle to the lowest Landau level introduces a noncommutativity between Cartesian coordinate operators. This idea is extended to the motion of a charged particle on a sphere in the presence of a magnetic monopole. Restricting the dynamics to the lowest energy level results in noncommutativity for angular variables and to a definition of a noncommuting spherical product. The values of the commutators of various angular variables are not arbitrary but are restricted by the discrete magnitude of the magnetic monopole charge. An algebra, isomorphic to angular momentum, appears. This algebra is used to define a spherical star product. Solutions are obtained for dynamics in the presence of additional angular dependent potentials.Comment: 5 pages, RevTex4 fil

    L’hypothèse du rêve et les vérités de la raison

    Get PDF

    Weyl-Wigner-Moyal formulation of a Dirac quantized constrained system

    Get PDF
    An extension of the Weyl-Wigner-Moyal formulation of quantum mechanics suitable for a Dirac quantized constrained system is proposed. In this formulation, quantum observables are described by equivalent classes of Weyl symbols. The Weyl product of these equivalent classes is defined. The new Moyal bracket is shown to be compatible with the Dirac bracket for constrained systems

    Lorentz symmetry breaking in the noncommutative Wess-Zumino model: One loop corrections

    Full text link
    In this paper we deal with the issue of Lorentz symmetry breaking in quantum field theories formulated in a non-commutative space-time. We show that, unlike in some recente analysis of quantum gravity effects, supersymmetry does not protect the theory from the large Lorentz violating effects arising from the loop corrections. We take advantage of the non-commutative Wess-Zumino model to illustrate this point.Comment: 9 pages, revtex4. Corrected references. Version published in PR

    Noncommutative Coordinates Invariant under Rotations and Lorentz Transformations

    Get PDF
    Dynamics with noncommutative coordinates invariant under three dimensional rotations or, if time is included, under Lorentz transformations is developed. These coordinates turn out to be the boost operators in SO(1,3) or in SO(2,3) respectively. The noncommutativity is governed by a mass parameter MM. The principal results are: (i) a modification of the Heisenberg algebra for distances smaller than 1/M, (ii) a lower limit, 1/M, on the localizability of wave packets, (iii) discrete eigenvalues of coordinate operator in timelike directions, and (iv) an upper limit, MM, on the mass for which free field equations have solutions. Possible restrictions on small black holes is discussed.Comment: 14 pages; LaTex using JHEP3.cl

    Phenomenology of Noncommutative Field Theories

    Full text link
    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model.Comment: 7 pages RevTeX, 4 eps figures, Invited plenary talk, IX Mexican Workshop on Particles and Fields, November 17-22, 2003, Universidad de Colima, Mexic

    The time-reversal test for stochastic quantum dynamics

    Get PDF
    The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultra-cold atomic Bose-Einstein condensates (BEC) to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022×10236.022\times10^{23} (Avogadro's number) of particles. This system is realisable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.Comment: revtex4, two figures, four page

    On calculating the mean values of quantum observables in the optical tomography representation

    Full text link
    Given a density operator ρ^\hat \rho the optical tomography map defines a one-parameter set of probability distributions wρ^(X,ϕ), ϕ[0,2π),w_{\hat \rho}(X,\phi),\ \phi \in [0,2\pi), on the real line allowing to reconstruct ρ^\hat \rho . We introduce a dual map from the special class A\mathcal A of quantum observables a^\hat a to a special class of generalized functions a(X,ϕ)a(X,\phi) such that the mean value ρ^=Tr(ρ^a^)_{\hat \rho} =Tr(\hat \rho\hat a) is given by the formula ρ^=02π+wρ^(X,ϕ)a(X,ϕ)dXdϕ_{\hat \rho}= \int \limits_{0}^{2\pi}\int \limits_{-\infty}^{+\infty}w_{\hat \rho}(X,\phi)a(X,\phi)dXd\phi. The class A\mathcal A includes all the symmetrized polynomials of canonical variables q^\hat q and p^\hat p.Comment: 8 page

    Coherent States and N Dimensional Coordinate Noncommutativity

    Get PDF
    Considering coordinates as operators whose measured values are expectations between generalized coherent states based on the group SO(N,1) leads to coordinate noncommutativity together with full NN dimensional rotation invariance. Through the introduction of a gauge potential this theory can additionally be made invariant under NN dimensional translations. Fluctuations in coordinate measurements are determined by two scales. For small distances these fluctuations are fixed at the noncommutativity parameter while for larger distances they are proportional to the distance itself divided by a {\em very} large number. Limits on this number will lbe available from LIGO measurements.Comment: 16 pqges. LaTeX with JHEP.cl
    corecore