11 research outputs found

    Study of the reaction 2-(p-nitrophenyl)ethyl bromide + OH- in dimeric micellar solutions

    Get PDF
    The dehydrobromination reaction 2-(p-nitrophenyl)ethyl bromide + OH− was investigated in several alkanediyl---bis(dodecyldimethylammonium) bromide, 12-s- 12,2Br− (with s = 2, 3, 4, 5, 6, 8, 10, 12) micellar solutions, in the presence of NaOH 5 × 10−3 M. The kinetic data were quantitatively rationalized within the whole surfactant concentration range by using an equation based on the pseudophase ion-exchange model and taking the variations in the micellar ionization degree caused by the morphological transitions into account. The agreement between the theoretical and the experimental data was good in all the dimeric micellar media studied, except for the 12-2-12,2Br− micellar solutions. In this case, the strong tendency to micellar growth shown by the 12-2-12,2Br− micelles could be responsible for the lack of accordance. Results showed that the dimeric micelles accelerate the reaction more than two orders of magnitude as compared to waterConsejería de Innovación, Ciencia y Empresa de la Junta de Andalucía FQM-274and P07-FQM-03056DGCYT grant BQU2009-0747

    Synergism Effect between Phenolic Metabolites and Endogenous Antioxidants in Terms of Antioxidant Activity

    Get PDF
    Polyphenolic compounds, widely distributed in plant kingdom, have been exhaustively studied for their bioactive properties specially antioxidant activity. However, they are extensively metabolized by human organism and the resulting metabolites are largely responsible for their effects. Furthermore, they may interact with the endogenous antioxidant network being this possibility scarcely studied. Plasma antioxidant network encompasses antioxidant enzymes and other substances such as uric acid. In addition, ascorbic acid is the major compound representing water soluble compartment both in foods and human body. The interaction of this vitamin with phenolic compound is largely unexplored. This work aims to study if there is a synergic effect between phenolic metabolites and main antioxidants (uric and ascorbic acid). For this purpose, the antioxidant activity was evaluated in terms of ORAC (oxygen radical absorbance capac ity) and FRAP (ferricreducing antioxidant power) as these tests involved either HAT (Hydrogen Atom Transfer) or SET (Single Electron Transfer) mechanisms. Additionally, a kinetic studied was developed to test if the rate constant presented a synergic effect. Protocatechuic acid, 3, 4 -dihydroxyphenylacetic acid, 3,4 -dihydroxyphenylpropionic acid and 3 -hydroxyphenylacetic acid were selected as they were metabolites of polyphenol compounds such as anthocyanins, quercetin, neohesperidin, chlorogenic acid and hesperetin present in wines, orange and strawberries. A synergic effect was proved for the combination of ascorbic acid with 3,4 -dihydroxyphenylacetic acid, both in terms of antioxidant activity and potent increase of velocity of the antioxidant reaction that took place.Ministerio de Economía y Competitividad AGL-2010-22152-C03-0

    Binding of DNA by a dinitro-diester calix[4]arene: Denaturation and condensation of DNA

    Get PDF
    A study of a dinitro-diester calix[4]arene (5,17-(3-nitrobenzylideneamino)-11,23-di-tert-butyl-25,27-diethoxycarbonyl methyleneoxy-26,28-dihydroxycalix[4]arene) interaction with calf-thymus DNA was carried out using several techniques. The measurements were done at various molar ratios X=[calixarene]/[DNA]. Results show diverse changes in the DNA conformation depending on the X value. Thus, at low macrocycle concentrations, the calixarene binds to the polynucleotide. This interaction, mainly in groove mode, weakens the hydrogen bonds between base pairs of the helix inducing denaturation of the double strands, as well as condensation of the macromolecule, from an extended coil state to a globular state. An opposite effect is observed at X molar ratios higher than 0.07. The de-condensation of DNA happens, that is, the transition from a compact state to a more extended conformation, probably due to the stacking of calixarene molecules in the solution. Results also show the importance of making a proper choice of the system under consideration.Junta de Andalucía P08-FQM-03623, P12-FQM-110

    Preparation and Characterization of New Liposomes. Bactericidal Activity of Cefepime Encapsulated into Cationic Liposomes

    Get PDF
    Cefepime is an antibiotic with a broad spectrum of antimicrobial activity. However, this antibiotic has several side effects and a high degradation rate. For this reason, the preparation and characterization of new liposomes that are able to encapsulate this antibiotic seem to be an important research line in the pharmaceutical industry. Anionic and cationic liposomes were prepared and characterized. All cationic structures contained the same cationic surfactant, N,N,N-triethyl-N-(12-naphthoxydodecyl)ammonium. Results showed a better encapsulation-efficiency percentage (EE%) of cefepime in liposomes with phosphatidylcholine and cholesterol than with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). The presence of cholesterol and the quantity of egg-yolk phospholipid in the liposome increased the encapsulation percentage. The bactericidal activity against Escherichia coli of cefepime loaded into liposomes with phosphatidylcholine was measured. The inhibitory zone in an agar plate for free cefepime was similar to that obtained for loaded cefepime. The growth-rate constant of E. coli culture was also measured in working conditions. The liposome without any antibiotic exerted no influence in such a rate constant. All obtained results suggest that PC:CH:12NBr liposomes are biocompatible nanocarriers of cefepime that can be used in bacterial infections against Escherichia coli with high inhibitory activity

    Influence of the surfactant degree of oligomerization on the formation of cyclodextrin: surfactant inclusion complexes

    Get PDF
    Supramolecular complexation is an attractive strategy to modulate the performance of surfactants, e.g., by host-guest interactions. Here, we investigate the interaction of single-chained, di-, tri-, and tetrameric cationic surfactants with cyclodextrins by conductivity and 1H NMR measurements, exploring the effect of increasing the number of the surfactant hydrophobic tails on the stability of cyclodextrin:surfactant inclusion complexes. The stoichiometry and the binding equilibrium constants of the different inclusion complexes were elucidated. Under the working conditions, the number of hydrophobic chains was found not to affect stoichiometry and 1:1 inclusion complexes were formed for all the surfactants investigated. The stability of the host-guest complexes decreases from single-chained to dimeric (“gemini”) surfactants, the binding following a non-cooperative mechanism. This result may be rationalized by taking into account steric constraints and electrostatic effects as well as the need to overcome the hydrophobic interactions between the chains of the same surfactant molecule. However, a further increase in the number of hydrophobic tails, from two to three to four, results in an increase in the equilibrium binding constant, K1. In this case, an increment in the number of chains capable of interaction with the cyclodextrin molecules seems to be the main factor responsible for the increase in K1. ROESY spectra show the coexistence of different types of 1:1 host-guest complexes for tri- and tetrameric surfactants.Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía P12-FQM- 1105, FQM-274 y FQM-206University of Seville 2017/1004FEDER fund

    Metallo-Liposomes Derived from the [Ru(bpy)3]2+ Complex as Nanocarriers of Therapeutic Agents

    Get PDF
    The obtaining of nanocarriers of gene material and small drugs is still an interesting research line. Side-effects produced by the toxicity of several pharmaceutics, the high concentrations needed to get therapeutic effects, or their excessive use by patients have motivated the search for new nanostructures. For these reasons, cationic metallo-liposomes composed by phosphatidylcholine (PC), cholesterol (CHO) and RuC1C19 (a surfactant derived from the metallic complex [Ru(bpy)3]2+) were prepared and characterized by using diverse techniques (zeta potential, dynamic light scattering and electronic transmission microscopy –TEM-). Unimodal or bimodal populations of spherical aggregates with small sizes were obtained depending on the composition of the liposomes. The presence of cholesterol favored the formation of small aggregates. ct-DNA was condensed in the presence of the liposomes investigated. In-vitro assays demonstrated the ability of these nanoaggregates to internalize into different cell lines. A positive gene transfection into human bone osteosarcoma epithelial cells (U2OS) was also observed. The RuC1C19 surfactant was used as sensor to quantify the binding of DNA to the liposomes. Doxorubicin was encapsulated into the metallo-liposomes, demonstrating their ability to be also used as nanocarriers of drugs. A relationship between then encapsulation percentage of the antibiotic and the composition of the aggregates has been established.Junta de Andalucía 2019/FQM-206, 2019/FQM-274Ministerio de Ciencia e Innovación RTI2018-100692-BI00, PI-0005-2018, P18-RT-127

    Host-guest interactions between cyclodextrins and surfactants with functional groups at the end of the hydrophobic tail

    Get PDF
    The aim of this work was to investigate the influence of the incorporation of substituents at the end of the hydrophobic tail on the binding of cationic surfactants to α-, β-, and -cyclodextrins. The equilibrium binding constants of the 1:1 inclusion complexes formed follow the trend K1(α-CD)>K1(β-CD)>>K1(-CD), which can be explained by considering the influence of the CD cavity volume on the host-guest interactions. From the comparison of the K1 values obtained for dodecyltriethylammonium bromide, DTEAB, to those estimated for the surfactants with the substituents, it was found that the incorporation of a phenoxy group at the end of the hydrocarbon tail does not affect K1, and the inclusion of a naphthoxy group has some influence on the association process, slightly diminishing K1. This makes evident the importance of the contribution of hydrophobic interactions to the binding, the length of the hydrophobic chain being the key factor determining K1. However, the presence of the aromatic rings does influence the location of the host and the guest in the inclusion complexes. The observed NOE interactions between the aromatic protons and the CD protons indicate that the aromatic rings are partially inserted within the host cavity, with the cyclodextrin remaining close to the aromatic rings, which could be partially intercalated in the host cavity. To the authors´ knowledge this is the first study on the association of cyclodextrins with monomeric surfactants incorporating substituents at the end of the hydrophobic tai

    Metallo-Liposomes of Ruthenium Used as Promising Vectors of Genetic Material

    Get PDF
    Gene therapy is a therapeutic process consisting of the transport of genetic material into cells. The design and preparation of novel carriers to transport DNA is an important research line in the medical field. Hybrid compounds such as metallo-liposomes, containing a mixture of lipids, were prepared and characterized. Cationic metal lipids derived from the [Ru(bpy)3]2+ complex, RuC11C11 or RuC19C19, both with different hydrophobic/lipophilic ratios, were mixed with the phospholipid DOPE. A relation between the size and the molar fraction α was found and a multidisciplinary study about the interaction between the metallo-liposomes and DNA was performed. The metallo-liposomes/DNA association was quantified and a relationship between Kapp and α was obtained. Techniques such as AFM, SEM, zeta potential, dynamic light scattering and agarose gel electrophoresis demonstrated the formation of lipoplexes and showed the structure of the liposomes. L/D values corresponding to the polynucleotide's condensation were estimated. In vitro assays proved the low cell toxicity of the metallo-liposomes, lower for normal cells than for cancer cell lines, and a good internalization into cells. The latter as well as the transfection measurements carried out with plasmid DNA pEGFP-C1 have demonstrated a good availability of the Ru(II)-based liposomes for being used as non-toxic nanovectors in gene therapy.España Consejería de Educación y Ciencia de la Junta de Andalucía (Proyecto de Excelencia P12-FQM-1105, FQM-206 and FQM-274, and PI-0005-2018)España,, Universidad de Sevilla, VI Plan Propio Universidad de Sevilla (PP2018-10338)España Ministerio de Ciencia, Innovación y Universidades (RTI2018-100692-B-I00

    Study of ionic surfactants interactions with carboxylated single-walled carbon nanotubes by using ion-selective electrodes

    No full text
    Potentiometric measurements based on the use of ion-selective electrodes have been used to study the interaction (adsorption) of anionic and cationic surfactants with functionalized single-walled carbon nanotubes (SWCNT-COOH). According to results, the interaction is driven by hydrophobic forces between the hydrocarbon tails of the surfactants and the nanotube walls. Electrostatic interactions practically exert no influence on the interaction. Driving forces in the dispersion processes are different.Junta de Andalucía P12-FQM-110

    Potentiometric Study of Carbon Nanotube/Surfactant Interactions by Ion-Selective Electrodes. Driving Forces in the Adsorption and Dispersion Processes

    No full text
    The interaction (adsorption process) of commercial ionic surfactants with non-functionalized and functionalized carbon nanotubes (CNTs) has been studied by potentiometric measurements based on the use of ion-selective electrodes. The goal of this work was to investigate the role of the CNTs’ charge and structure in the CNT/surfactant interactions. Non-functionalized single- (SWCNT) and multi-walled carbon nanotubes (MWCNT), and amine functionalized SWCNT were used. The influence of the surfactant architecture on the CNT/surfactant interactions was also studied. Surfactants with different charge and hydrophobic tail length (sodium dodecyl sulfate (SDS), octyltrimethyl ammonium bromide (OTAB), dodecyltrimethyl ammonium bromide (DoTAB) and hexadecyltrimethyl ammonium bromide (CTAB)) were studied. According to the results, the adsorption process shows a cooperative character, with the hydrophobic interaction contribution playing a key role. This is made evident by the correlation between the free surfactant concentration (at a fixed [CNT]) and the critical micellar concentration, cmc, found for all the CNTs and surfactants investigated. The electrostatic interactions mainly determine the CNT dispersion, although hydrophobic interactions also contribute to this process.Junta de Andalucía-2019/FQM-206 y 2019/FQM-274Fondo Europeo de Desarrollo Regional (FEDER
    corecore