12 research outputs found

    Effect of Vaginal Progesterone and Dydrogesterone on Pregnancy Outcomes in patients with Threatened Abortion: A Randomized Clinical Trial

    Get PDF
    Introduction: Despite the positive evidence on the effect of progesterone on protection of pregnancy in patients with threatened abortion, the results of studies regarding its drug type have been controversial. This study was performed with aim to compare the effect of vaginal progesterone and dydrogesterone on pregnancy outcome in cases with threatened abortion. Methods: In this single-blind randomized clinical trial, 160 pregnant women with threatened abortion who referred to Qazvin Kowsar Hospital in 2018 were randomly assigned to receive dydrogesterone (Duphaston) 10 mg twice daily or vaginal progesterone (Cyclogest) 400 mg daily. Finally, pregnancy outcomes were compared between the two groups. Data were analyzed by SPSS software (version 18) and Chi-square, independent t-test and Mann-Whitney tests. P<0.05 was considered statistically significant. Results: Frequency of cesarean section was 27 (33.7%) in the dydrogesterone group and 25 (31.2%) in the vaginal progesterone group (P = 0.736). In general, the incidence of preterm labor was 97 (60.6%) and there was no significant difference between the two groups (P >0.05). In addition, incidence of preeclampsia, gestational diabetes mellitus, placenta previa and intrauterine fetal death as well as neonatal weight were not significantly different between the two groups (P >0.05). Finally, maternal and neonatal complications showed no significant difference between the two groups (P = 0.675). Conclusion: Pregnancy outcomes after administration of dydrogesterone are not different with vaginal progesterone in the treatment of threatened abortion

    Late trimming delays sugar accumulation in grapes

    Get PDF
    Background and Aims Climate change can alter the synchronous accumulation of sugar and other main berry compounds during ripening. The aim of this study was to determine whether post-veraison trimming could delay sugar accumulation and influence the production of anthocyanins and seed tannins in Sangiovese grapes. Methods and Results Shoots were trimmed in 2009, 2010 and 2011 when the berry total soluble solids (TSS) reached 15–17°Brix, leaving eight nodes on each main shoot. The accumulation of TSS, anthocyanins and seed tannins was measured during ripening, and yield parameters were recorded at harvest. Grapes from trimmed vines contained a lower TSS in 2009 and 2010, but there was no impact on the concentration of anthocyanins and seed tannins. In 2011, leaf area limitation was insufficient to reduce TSS accumulation, because yield constraints were observed and the leaf area/yield ratio was within the optimal range. Conclusions The lower rate of TSS accumulation in berries had no impact on the concentration of anthocyanins and seed tannins, suggesting that this approach could produce grapes with a lower TSS at harvest or delay harvest. In low-vigour vines suffering from water deficit, the post-veraison trimming repeated over the years could reduce yield, which may be responsible for the lack of TSS reduction compared with that of control vines. Significance of the Study Our study provides insight into the relationship between TSS accumulation and the production of anthocyanins and seed tannins in the berry in response to post-veraison leaf area reduction

    Effects of Global Warming on Berry Composition of cv. Sangiovese: Biochemical and Molecular Aspects and Agronomical Adaptation Approaches

    Get PDF
    Wine grape must deal with serious problems due to the unfavorable climatic conditions resulted from global warming. High temperatures result in oxidative damages to grape vines. The excessive elevated temperatures are critical for grapevine productivity and survival and contribute to degradation of grape and wine quality and yield. Elevated temperature can negatively affect anthocyanin accumulation in red grape. Particularly, cv. Sangiovese was identified to be very sensitive to such condition. The quantitative real-time PCR analysis showed that flavonoid biosynthetic genes were slightly repressed by high temperature. Also, the heat stress repressed the expression of the transcription factor “VvMYBA1” that activates the expression of UFGT. Moreover, high temperatures had repressing effects on the activity of the flavonoids biosynthetic enzymes “PAL” and “UFGT”.Anthocyanin accumulation in berry skin is due to the balance between its synthesis and oxidation. In grape cv. Sangiovese, the gene transcription and activity of peroxidases enzyme was elevated by heat stress as a defensive mechanism of ROS-scavenging. Among many isoforms of peroxidases genes, one gene (POD 1) was induced in Sangiovese under thermal stress condition. This gene was isolated and evaluated via the technique of genes transformation from grape to Petunia. Reduction in anthocyanins concentration and higher enzymatic activity of peroxidase was observed in POD 1 transformed Petunia after heat shock compared to untrasformed control. Moreover, in wine producing regions, it is inevitable for the grape growers to adopt some adaptive strategies to alleviate grape damages to abiotic stresses. Therefore, in this thesis, the technique of post veraison trimming was done to improve the coupling of phenolic and sugar ripening in Vitis vinifera L. cultivar Sangiovese. Trimming after veraison showed to be executable to slow down the rate of sugar accumulation in grape (to decrease the alcohol potential in wines) without evolution of the main berry flavonoids compounds

    A Host ER Fusogen Is Recruited by Turnip Mosaic Virus for Maturation of Viral Replication Vesicles

    No full text
    International audienceLike other positive-strand RNA viruses, the Turnip mosaic virus (TuMV) infection leads to the formation of viral vesicles at the endoplasmic reticulum (ER). Once released from the ER, the viral vesicles mature intracellularly and then move intercellularly. While it is known that the membrane-associated viral protein 6K2 plays a role in the process, the contribution of host proteins has been poorly defined. In this article, we show that 6K2 interacts with RHD3, an ER fusogen required for efficient ER fusion. When RHD3 is mutated, a delay in the development of TuMV infection is observed. We found that the replication of TuMV and the cell-to-cell movement of its replication vesicles are impaired in rhd3 This defect can be tracked to a delayed maturation of the viral vesicles from the replication incompetent to the competent state. Furthermore, 6K2 can relocate RHD3 from the ER to viral vesicles. However, a Golgi-localized mutated 6K2GV is unable to interact and relocate RHD3 to viral vesicles. We conclude that the maturation of TuMV replication vesicles requires RHD3 for efficient viral replication and movement

    Turnip mosaic virus components are released into the extracellular space by vesicles in infected leaves

    No full text
    International audienceTurnip mosaic virus (TuMV) reorganizes the endomembrane system of the infected cell to generate endoplasmic reticulum-derived motile vesicles containing viral replication complexes. The membrane-associated viral protein 6K2 plays a key role in the formation of these vesicles. Using confocal microscopy, we observed that this viral protein, a marker for viral replication complexes, localized in the extracellular space of infected Nicotiana benthamiana leaves. Previously, we showed that viral RNA is associated with multi-vesicular bodies (MVBs). Here, using transmission electron microscopy, we observed the proliferation of MVBs during infection and their fusion with the plasma membrane that resulted in the release of their intraluminal vesicles in the extracellular space. Immunogold labeling with a monoclonal antibody that recognizes double-stranded RNA indicated that the released vesicles contained viral RNA. Focused ion beam-extreme high-resolution scanning electron microscopy was used to generate a 3D image that showed extracellular vesicles in the cell wall. The presence of TuMV proteins in the extracellular space was confirmed by proteomic analysis of purified extracellular vesicles from Nicotiana benthamiana and Arabidopsis thaliana. Host proteins involved in biotic defense and in inter-organelle vesicular exchange were also detected. The association of extracellular vesicles with viral proteins and RNA emphasizes the implication of the plant extracellular space in viral infection

    Turnip Mosaic Virus Uses the SNARE Protein VTI11 in an Unconventional Route for Replication Vesicle Trafficking

    No full text
    International audienceInfection of plant cells by RNA viruses leads to the generation of organelle-like subcellular structures that contain the viral replication complex. During Turnip mosaic virus (TuMV) infection of Nicotiana benthamiana, the viral membrane protein 6K2 plays a key role in the release of motile replication vesicles from the host endoplasmic reticulum (ER). Here, we demonstrate that 6K2 contains a GxxxG motif within its predicted transmembrane domain that is vital for TuMV infection. Replacement of the Gly with Val within this motif inhibited virus production, and this was due to a relocation of the viral protein to the Golgi apparatus and the plasma membrane. This indicated that passage of 6K2 through the Golgi apparatus is a dead-end avenue for virus infection. Impairing the fusion of transport vesicles between the ER and the Golgi apparatus by overexpression of the SNARE Sec22 protein resulted in enhanced intercellular virus movement. Likewise, expression of nonfunctional, Golgi-located synaptotagmin during infection enhanced TuMV intercellular movement. 6K2 copurified with VTI11, a prevacuolar compartment SNARE protein. An Arabidopsis thaliana vti11 mutant was completely resistant to TuMV infection. We conclude that TuMV replication vesicles bypass the Golgi apparatus and take an unconventional pathway that may involve prevacuolar compartments/multivesicular bodies for virus infection

    The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature

    No full text
    Anthocyanin levels decline in some red grape berry varieties ripened under high-temperature conditions, but the underlying mechanism is not yet clear. Here we studied the effects of two different temperature regimes, representing actual Sangiovese (Vitis vinifera L.) viticulture regions, on the accumulation of mRNAs and enzymes controlling berry skin anthocyanins. Potted uniform plants of Sangiovese were kept from veraison to harvest, in two plastic greenhouses with different temperature conditions. The low temperature (LT) conditions featured average and maximum daily air temperatures of 20 and 29 °C, respectively, whereas the corresponding high temperature (HT) conditions were 22 and 36 °C, respectively. The anthocyanin concentration at harvest was much lower in HT berries than LT berries although their profile was similar under both conditions. Under HT conditions, the biosynthesis of anthocyanins was suppressed at both the transcriptional and enzymatic levels, but peroxidase activity was higher. This suggests that the low anthocyanin content of HT berries reflects the combined impact of reduced biosynthesis and increased degradation, particularly the direct role of peroxidases in anthocyanin catabolism. Overexpression of VviPrx31 decreased anthocyanin contents in Petunia hybrida petals under heat stress condition. These data suggest that high temperature can stimulate peroxidase activity thus anthocyanin degradation in ripening grape berries
    corecore