9 research outputs found

    GATA6 Activates Wnt Signaling in Pancreatic Cancer by Negatively Regulating the Wnt Antagonist Dickkopf-1

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease characterized by late diagnosis and treatment resistance. Recurrent genetic alterations in defined genes in association with perturbations of developmental cell signaling pathways have been associated with PDAC development and progression. Here, we show that GATA6 contributes to pancreatic carcinogenesis during the temporal progression of pancreatic intraepithelial neoplasia by virtue of Wnt pathway activation. GATA6 is recurrently amplified by both quantitative-PCR and fluorescent in-situ hybridization in human pancreatic intraepithelial neoplasia and in PDAC tissues, and GATA6 copy number is significantly correlated with overall patient survival. Forced overexpression of GATA6 in cancer cell lines enhanced cell proliferation and colony formation in soft agar in vitro and growth in vivo, as well as increased Wnt signaling. By contrast siRNA mediated knockdown of GATA6 led to corresponding decreases in these same parameters. The effects of GATA6 were found to be due to its ability to bind DNA, as forced overexpression of a DNA-binding mutant of GATA6 had no effects on cell growth in vitro or in vivo, nor did they affect Wnt signaling levels in these same cells. A microarray analysis revealed the Wnt antagonist Dickopf-1 (DKK1) as a dysregulated gene in association with GATA6 knockdown, and direct binding of GATA6 to the DKK1 promoter was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift assays. Transient transfection of GATA6, but not mutant GATA6, into cancer cell lines led to decreased DKK1 mRNA expression and secretion of DKK1 protein into culture media. Forced overexpression of DKK1 antagonized the effects of GATA6 on Wnt signaling in pancreatic cancer cells. These findings illustrate that one mechanism by which GATA6 promotes pancreatic carcinogenesis is by virtue of its activation of canonical Wnt signaling via regulation of DKK1

    Coordinated Activation of Candidate Proto-Oncogenes and Cancer Testes Antigens via Promoter Demethylation in Head and Neck Cancer and Lung Cancer

    Get PDF
    Background: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. Methodology/Principal Findings: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. Conclusions/Significance: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs i

    Identification of a suitable working posture for female workers engaged in golden thread work

    Get PDF
    Background: The golden thread (jori) work is one of the major home based industries providing employment to thousands of artisans spread over several rural areas of the West Bengal. The study is essentially labor intensive and thus workers are prone to suffer from work related health problems. Objective: The present study was aimed to evaluate the musculoskeletal disorders (MSDs) and postural stress of the female golden thread workers. Methods: The study was carried on 123 adult female golden thread workers in different districts of West Bengal. The prevalence of MSD, body part discomfort rating (BPD) and postural stress (by OWAS, RULA, REBA method) of the workers were evaluated by standard methods. The EMG of shoulder and back muscle was recorded with the help of the BIOPAC system. Result: The results showed that the prevalence of MSDs, BPD rating and postural stress were comparatively lower in case of sitting on the floor with folded legs than squatting and sitting on the floor with stretched legs. The EMG and RMS values of EMG voltage of shoulder and back muscle were comparatively lower in this posture than that of other two postures. Conclusion: It was therefore, concluded that sitting on the floor with folded legs was less hazardous and it imposed less postural stress in comparison to other sitting postures adopted by the golden thread workers.International Journal of Occupational Safety and Health, Vol 4 No 2 (2014) 24 – 3

    GATA6 activates Wnt signaling in pancreatic cancer by negatively regulating the Wnt antagonist Dickkopf-1

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease characterized by late diagnosis and treatment resistance. Recurrent genetic alterations in defined genes in association with perturbations of developmental cell signaling pathways have been associated with PDAC development and progression. Here, we show that GATA6 contributes to pancreatic carcinogenesis during the temporal progression of pancreatic intraepithelial neoplasia by virtue of Wnt pathway activation. GATA6 is recurrently amplified by both quantitative-PCR and fluorescent in-situ hybridization in human pancreatic intraepithelial neoplasia and in PDAC tissues, and GATA6 copy number is significantly correlated with overall patient survival. Forced overexpression of GATA6 in cancer cell lines enhanced cell proliferation and colony formation in soft agar in vitro and growth in vivo, as well as increased Wnt signaling. By contrast siRNA mediated knockdown of GATA6 led to corresponding decreases in these same parameters. The effects of GATA6 were found to be due to its ability to bind DNA, as forced overexpression of a DNA-binding mutant of GATA6 had no effects on cell growth in vitro or in vivo, nor did they affect Wnt signaling levels in these same cells. A microarray analysis revealed the Wnt antagonist Dickopf-1 (DKK1) as a dysregulated gene in association with GATA6 knockdown, and direct binding of GATA6 to the DKK1 promoter was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift assays. Transient transfection of GATA6, but not mutant GATA6, into cancer cell lines led to decreased DKK1 mRNA expression and secretion of DKK1 protein into culture media. Forced overexpression of DKK1 antagonized the effects of GATA6 on Wnt signaling in pancreatic cancer cells. These findings illustrate that one mechanism by which GATA6 promotes pancreatic carcinogenesis is by virtue of its activation of canonical Wnt signaling via regulation of DKK1.Supported by NIH grants CA106610, CA62924 and CA140599, The George Rubis Endowment for Pancreatic Cancer Research, The Michael Rolfe Pancreatic Cancer Foundation, Sigma Beta Sorority, The Joseph C. Monastra Foundation, The Alfredo Scatena Memorial, The Patty Boshell Pancreas Cancer Foundation, and Grants SAF2007-60860 and ONCOBIO Consolder from Ministerio de Ciencia e InnovaciΓ³n, Madrid, Spain (F.R.). The authors have no financial conflicts of interest related to this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip
    corecore