444 research outputs found
Cluster synchronization in an ensemble of neurons interacting through chemical synapses
In networks of periodically firing spiking neurons that are interconnected
with chemical synapses, we analyze cluster state, where an ensemble of neurons
are subdivided into a few clusters, in each of which neurons exhibit perfect
synchronization. To clarify stability of cluster state, we decompose linear
stability of the solution into two types of stabilities: stability of mean
state and stabilities of clusters. Computing Floquet matrices for these
stabilities, we clarify the total stability of cluster state for any types of
neurons and any strength of interactions even if the size of networks is
infinitely large. First, we apply this stability analysis to investigating
synchronization in the large ensemble of integrate-and-fire (IF) neurons. In
one-cluster state we find the change of stability of a cluster, which
elucidates that in-phase synchronization of IF neurons occurs with only
inhibitory synapses. Then, we investigate entrainment of two clusters of IF
neurons with different excitability. IF neurons with fast decaying synapses
show the low entrainment capability, which is explained by a pitchfork
bifurcation appearing in two-cluster state with change of synapse decay time
constant. Second, we analyze one-cluster state of Hodgkin-Huxley (HH) neurons
and discuss the difference in synchronization properties between IF neurons and
HH neurons.Comment: Notation for Jacobi matrix is changed. Accepted for publication in
Phys. Rev.
Modular organization enhances the robustness of attractor network dynamics
Modular organization characterizes many complex networks occurring in nature,
including the brain. In this paper we show that modular structure may be
responsible for increasing the robustness of certain dynamical states of such
systems. In a neural network model with threshold-activated binary elements, we
observe that the basins of attractors, corresponding to patterns that have been
embedded using a learning rule, occupy maximum volume in phase space at an
optimal modularity. Simultaneously, the convergence time to these attractors
decreases as a result of cooperative dynamics between the modules. The role of
modularity in increasing global stability of certain desirable attractors of a
system may provide a clue to its evolution and ubiquity in natural systems.Comment: 6 pages, 4 figure
Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech
The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax
The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes
In the proximity of melting transitions of artificial and biological
membranes fluctuations in enthalpy, area, volume and concentration are
enhanced. This results in domain formation, changes of the elastic constants,
changes in permeability and slowing down of relaxation processes. In this study
we used pressure perturbation calorimetry to investigate the relaxation time
scale after a jump into the melting transition regime of artificial lipid
membranes. This time corresponds to the characteristic rate of domain growth.
The studies were performed on single-component large unilamellar and
multilamellar vesicle systems with and without the addition of small molecules
such as general anesthetics, neurotransmitters and antibiotics. These drugs
interact with membranes and affect melting points and profiles. In all systems
we found that heat capacity and relaxation times are related to each other in a
simple manner. The maximum relaxation time depends on the cooperativity of the
heat capacity profile and decreases with a broadening of the transition. For
this reason the influence of a drug on the time scale of domain formation
processes can be understood on the basis of their influence on the heat
capacity profile. This allows estimations of the time scale of domain formation
processes in biological membranes.Comment: 12 pages, 6 figure
A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems
In this paper we present a methodological framework that meets novel
requirements emerging from upcoming types of accelerated and highly
configurable neuromorphic hardware systems. We describe in detail a device with
45 million programmable and dynamic synapses that is currently under
development, and we sketch the conceptual challenges that arise from taking
this platform into operation. More specifically, we aim at the establishment of
this neuromorphic system as a flexible and neuroscientifically valuable
modeling tool that can be used by non-hardware-experts. We consider various
functional aspects to be crucial for this purpose, and we introduce a
consistent workflow with detailed descriptions of all involved modules that
implement the suggested steps: The integration of the hardware interface into
the simulator-independent model description language PyNN; a fully automated
translation between the PyNN domain and appropriate hardware configurations; an
executable specification of the future neuromorphic system that can be
seamlessly integrated into this biology-to-hardware mapping process as a test
bench for all software layers and possible hardware design modifications; an
evaluation scheme that deploys models from a dedicated benchmark library,
compares the results generated by virtual or prototype hardware devices with
reference software simulations and analyzes the differences. The integration of
these components into one hardware-software workflow provides an ecosystem for
ongoing preparative studies that support the hardware design process and
represents the basis for the maturity of the model-to-hardware mapping
software. The functionality and flexibility of the latter is proven with a
variety of experimental results
Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE
Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE
Beyond Statistical Significance: Implications of Network Structure on Neuronal Activity
It is a common and good practice in experimental sciences to assess the statistical significance of measured outcomes. For this, the probability of obtaining the actual results is estimated under the assumption of an appropriately chosen null-hypothesis. If this probability is smaller than some threshold, the results are deemed statistically significant and the researchers are content in having revealed, within their own experimental domain, a “surprising” anomaly, possibly indicative of a hitherto hidden fragment of the underlying “ground-truth”. What is often neglected, though, is the actual importance of these experimental outcomes for understanding the system under investigation. We illustrate this point by giving practical and intuitive examples from the field of systems neuroscience. Specifically, we use the notion of embeddedness to quantify the impact of a neuron's activity on its downstream neurons in the network. We show that the network response strongly depends on the embeddedness of stimulated neurons and that embeddedness is a key determinant of the importance of neuronal activity on local and downstream processing. We extrapolate these results to other fields in which networks are used as a theoretical framework
Invariant computations in local cortical networks with balanced excitation and inhibition
[Abstract] Cortical computations critically involve local neuronal circuits. The computations are often invariant across a cortical area yet are carried out by networks that can vary widely within an area according to its functional architecture. Here we demonstrate a mechanism by which orientation selectivity is computed invariantly in cat primary visual cortex across an orientation preference map that provides a wide diversity of local circuits. Visually evoked excitatory and inhibitory synaptic conductances are balanced exquisitely in cortical neurons and thus keep the spike response sharply tuned at all map locations. This functional balance derives from spatially isotropic local connectivity of both excitatory and inhibitory cells. Modeling results demonstrate that such covariation is a signature of recurrent rather than purely feed-forward processing and that the observed isotropic local circuit is sufficient to generate invariant spike tuning
A brain-computer interface with vibrotactile biofeedback for haptic information
<p>Abstract</p> <p>Background</p> <p>It has been suggested that Brain-Computer Interfaces (BCI) may one day be suitable for controlling a neuroprosthesis. For closed-loop operation of BCI, a tactile feedback channel that is compatible with neuroprosthetic applications is desired. Operation of an EEG-based BCI using only <it>vibrotactile feedback</it>, a commonly used method to convey haptic senses of contact and pressure, is demonstrated with a high level of accuracy.</p> <p>Methods</p> <p>A Mu-rhythm based BCI using a motor imagery paradigm was used to control the position of a virtual cursor. The cursor position was shown visually as well as transmitted haptically by modulating the intensity of a vibrotactile stimulus to the upper limb. A total of six subjects operated the BCI in a two-stage targeting task, receiving only vibrotactile biofeedback of performance. The location of the vibration was also systematically varied between the left and right arms to investigate location-dependent effects on performance.</p> <p>Results and Conclusion</p> <p>Subjects are able to control the BCI using only vibrotactile feedback with an average accuracy of 56% and as high as 72%. These accuracies are significantly higher than the 15% predicted by random chance if the subject had no voluntary control of their Mu-rhythm. The results of this study demonstrate that vibrotactile feedback is an effective biofeedback modality to operate a BCI using motor imagery. In addition, the study shows that placement of the vibrotactile stimulation on the biceps ipsilateral or contralateral to the motor imagery introduces a significant bias in the BCI accuracy. This bias is consistent with a drop in performance generated by stimulation of the contralateral limb. Users demonstrated the capability to overcome this bias with training.</p
A Cortical Attractor Network with Martinotti Cells Driven by Facilitating Synapses
The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought
- …