28 research outputs found

    Discovery of Bragg confined hybrid modes with high Q-factor in a hollow dielectric resonator

    Full text link
    The authors report on observation of Bragg confined mode in a hollow cylindrical dielectric cavity. A resonance was observed at 13.4 GHzGHz with an unloaded Q-factor of order 2×1052\times10^5, which is more than a factor of 6 above the dielectric loss limit. Previously such modes have only been realized from pure Transverse Electric modes with no azimuthal variations and only the EϕE_{\phi} component. From rigorous numeric simulations it is shown that the mode is a hybrid mode with non-zero azimuthal variations and with dominant ErE_r and EϕE_{\phi} electric field components and HzH_z magnetic field component.Comment: Accepted to be published in Applied Physics Letter

    Detrapping and retrapping of free carriers in nominally pure single crystal GaP, GaAs and 4H-SiC semiconductors under light illumination at cryogenic temperatures

    Full text link
    We report on extremely sensitive measurements of changes in the microwave properties of high purity non-intentionally-doped single-crystal semiconductor samples of gallium phosphide, gallium arsenide and 4H-silicon carbide when illuminated with light of different wavelengths at cryogenic temperatures. Whispering gallery modes were excited in the semiconductors whilst they were cooled on the coldfinger of a single-stage cryocooler and their frequencies and Q-factors measured under light and dark conditions. With these materials, the whispering gallery mode technique is able to resolve changes of a few parts per million in the permittivity and the microwave losses as compared with those measured in darkness. A phenomenological model is proposed to explain the observed changes, which result not from direct valence to conduction band transitions but from detrapping and retrapping of carriers from impurity/defect sites with ionization energies that lay in the semiconductor band gap. Detrapping and retrapping relaxation times have been evaluated from comparison with measured data.Comment: 7 pages, 6 figure

    Accurate phase synchronisation of a microwave oscillator

    No full text
    International audienceWe developed an effective technique for phase synchronization of a cryogenic microwave oscillator. The achieved quality of phase synchronization is a few milliradians. It enables accurate measurements of extremely weak phase fluctuations expected from the next generation of frequency stabilized microwave oscillators based on the cryogenically cooled sapphire dielectric resonators
    corecore