4,075 research outputs found
European Springtails Orchesella cincta (L.) and O. villosa (L.) (Collembola: Entomobryidae): Vagabond Species of the Nearctic Region
North American specimens of the European invasive springtail Orchesella cincta (L.) were compared to several published European haplotypes in a phylogenetic framework using likelihood methods based on a portion of cytochrome oxidase II (cox2). Our analyses provide direct evidence of at least two distinct introductions of this invasive to North America from different regions of Europe. Additional introduction events cannot be ruled out because detection is limited by extremely low sequence divergence among populations inhabiting different regions of the continent. Orchesella villosa (L.), another invasive from Europe, is another candidate for multiple introductions. Herein we include the cox2 sequence from single specimens of O. villosa from Maine and Oregon. Although these two specimens are identical in sequence, they differ from a published sequence from a European specimen by 15%, indicating significant undocumented genetic variation in the natal range of O. villosa. Additional sampling of Nearctic populations of O. villosa might reveal the same situation reported herein for O. cincta
Exploits in the tropics
https://place.asburyseminary.edu/firstfruitsheritagematerial/1163/thumbnail.jp
Exploits in the tropics
https://place.asburyseminary.edu/ecommonsatsdigitalresources/1551/thumbnail.jp
3D-Printed Morphing Wings for Controlling Yaw on Flying-Wing Aircraft
The flaps on an airplane wing are used to control the aircraft during flight. These flaps traditionally have at most three articulation or hinge points. Recent studies have shown improved flap efficiency using a conformal flap, which deforms following a curved shape. Much of aircraft improvement comes through increasing its efficiency during flight. This efficiency is generally improved by decreasing the drag force on the aircraft. A potential solution to decrease drag is to remove additional lifting surfaces, such as the horizontal and vertical stabilizer ubiquitous on general aviation aircraft. These additional lifting surfaces are used to trim and control the aircraft during flight. A flying-wing aircraft, which has no additional lifting surfaces, is trimmed and controlled using multiple flaps along the main wing. 3D-printing the mechanisms used to control these flaps has significant advantages. 3D-printing is fast, cheap, easy to repeat, easy to replicate, and produces durable parts. Two morphing mechanisms manufactured using 3D-printing are presented as viable solutions to demonstrate yaw control on a flying-wing aircraft. The Airfoil Recambering Compliant System (ARCS) is presented as a solution for a wing using a single flap with multiple actuators. The Kinetic Internal Nexus Compliant System (KINCS) is presented as a solution for a wing using multiple flaps, each with a single actuator. The final KINCS design used for a prototype flying-wing aircraft is presented
Modeling the effect of copper availability on bacterial denitrification
When denitrifying bacteria such as Paracoccus denitrificans respire anaerobically they convert nitrate to dinitrogen gas via a pathway which includes the potent greenhouse gas, nitrous oxide (NO). The copper-dependent enzyme Nitrous Oxide reductase (Nos) catalyzes the reduction of NO to dinitrogen. In low-copper conditions, recent experiments in chemostats have demonstrated that Nos efficiency decreases resulting in significant NO emissions. For the first time, a chemostat-based mathematical model is developed that describes the anaerobic denitrification pathway based on Michaelis-Menten kinetics and published kinetic parameters. The model predicts steady-state enzyme levels from experimental data. For low copper concentrations, the predicted Nos level is significantly reduced, whereas the levels for the non copper-dependent reductases in the pathway remain relatively unaffected. The model provides time courses for the pathway metabolites that accurately reflect previously published experimental data. In the absence of experimental data purely predictive analyses can also be readily performed by calculating the relative Nos level directly from the copper concentration. Here, the model quantitatively estimates the increasing level of emitted NO as the copper level decreases. We have developed a mathematical model for the denitrification pathway based on existing experimental results, Michaelis-Menten kinetics and experimentally obtained kinetic constants. This is the first such model to incorporate the copper concentration in order to predict emissions of the potent greenhouse gas, nitrous oxide (NO), as well as the other nitrogenous compounds in the pathway. The model predicts increasing NO emissions as the copper level is lowered, in agreement with experimental observations in chemostats. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Novel Distances for Dollo Data
We investigate distances on binary (presence/absence) data in the context of
a Dollo process, where a trait can only arise once on a phylogenetic tree but
may be lost many times. We introduce a novel distance, the Additive Dollo
Distance (ADD), which is consistent for data generated under a Dollo model, and
show that it has some useful theoretical properties including an intriguing
link to the LogDet distance. Simulations of Dollo data are used to compare a
number of binary distances including ADD, LogDet, Nei Li and some simple, but
to our knowledge previously unstudied, variations on common binary distances.
The simulations suggest that ADD outperforms other distances on Dollo data.
Interestingly, we found that the LogDet distance performs poorly in the context
of a Dollo process, which may have implications for its use in connection with
conditioned genome reconstruction. We apply the ADD to two Diversity Arrays
Technology (DArT) datasets, one that broadly covers Eucalyptus species and one
that focuses on the Eucalyptus series Adnataria. We also reanalyse gene family
presence/absence data on bacteria from the COG database and compare the results
to previous phylogenies estimated using the conditioned genome reconstruction
approach
An Alternate Dimensionless Form of the Linearized Rigid-Body Aircraft Equations of Motion with Emphasis on Dynamic Parameters
The equations of motion for an aircraft can be linearized about a reference condition within the assumptions of small disturbances and linear aerodynamics. The resulting system of equations is typically solved to obtain the eigenvalues and eigenvectors that describe the small disturbance motion of the aircraft. Results from such an analysis are often used to predict the rigid-body dynamic modes of the aircraft and associated handling qualities. This process is typically carried out in dimensional form in most text books, or in nondimensional form using dimensionless parameters rooted in aerodynamic theory. Here we apply Buckingham’s Pi theorem to obtain nondimensional parameters based on the aircraft rigid-body dynamics rather than aerodynamics. This approach may be more useful for understanding how aircraft dynamics scale with appropriate design parameters
Simplified Mass and Inertial Estimates for Aircraft with Components of Constant Density
Aircraft mass and inertial properties are required for predicting the dynamics and handling qualities of aircraft. However, such properties can be difficult to estimate since these depend on the external shape and internal structure, systems, and mass distributions within the airframe. Mass and inertial properties of aircraft are often predicted using computer-aided design software, or measured using various experimental techniques. The present paper presents a method for quickly predicting the mass and inertial properties of complete aircraft consisting of components of constant density. Although the assumption of constant density may appear limiting, the method presented in this paper can be used to approximate mass properties of complex internal structures. Inertial estimates for rectangular cuboids, cylinders, spheres, wing segments, and rotors are presented here. The influence of geometric properties of wing segments such as sweep, taper, airfoil geometry, and dihedral are included. The utility of the method is presented and the accuracy is evaluated with various test cases
Analytic Solutions for Volume, Mass, Center of Gravity, and Inertia of Wing Segments and Rotors of Constant Density
In the preliminary design of aircraft lifting surfaces, accurate mass and inertia properties can be difficult to obtain. Typically, such methods as computer-aided design or statistical processes are used to determine these properties. These methods require significant time and effort to implement. The present paper presents an exact analytic method for calculating the volume, mass, center of gravity, and inertia properties of wing segments and rotors of constant density. The influence of taper, spanwise thickness distribution, airfoil geometry, and sweep are included. The utility of the method is presented, and the accuracy is evaluated with various test cases via percent difference with a corresponding computer-aided design model. These case studies demonstrate the present method to be accurate to within about 1% for typical wing geometries and within about 1.3% for typical propeller geometries
- …