2 research outputs found
Lack of cone mediated retinal function increases susceptibility to form-deprivation myopia in mice
© 2018 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
This author accepted manuscript is made available following 12 month embargo from date of publication (December 2018) in accordance with the publisher’s archiving policyRetinal photoreceptors are important in visual signaling for normal eye growth in animals. We used Gnat2cplf3/cplf3 (Gnat2−/−) mice, a genetic mouse model of cone dysfunction to investigate the influence of cone signaling in ocular refractive development and myopia susceptibility in mice. Refractive development under normal visual conditions was measured for Gnat2−/− and age-matched Gnat2+/+ mice, every 2 weeks from 4 to 14 weeks of age. Weekly measurements were performed on a separate cohort of mice that underwent monocular form-deprivation (FD) in the right eye from 4 weeks of age using head-mounted diffusers. Refraction, corneal curvature, and ocular biometrics were obtained using photorefraction, keratometry and optical coherence tomography, respectively. Retinas from FD mice were harvested, and analyzed for dopamine (DA) and 3,4-dihydroxyphenylacetate (DOPAC) using high-performance liquid chromatography. Under normal visual conditions, Gnat2+/+ and Gnat2−/− mice showed similar refractive error, axial length, and corneal radii across development (p > 0.05), indicating no significant effects of the Gnat2 mutation on normal ocular refractive development in mice. Three weeks of FD produced a significantly greater myopic shift in Gnat2−/− mice compared to Gnat2+/+ controls (−5.40 ± 1.33 D vs −2.28 ± 0.28 D, p = 0.042). Neither the Gnat2 mutation nor FD altered retinal levels of DA or DOPAC. Our results indicate that cone pathways needed for high acuity vision in primates are not as critical for normal refractive development in mice, and that both rods and cones contribute to visual signalling pathways needed to respond to FD in mammalian eyes.
Note: Aspects of the article have been presented at the American Academy of Optometry meeting on November 2016 in Anaheim, California, USA
Recommended from our members
Reducing acetylated tau is neuroprotective in brain injury
Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer’s disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.[Display omitted]•Brain injury induces Alzheimer’s disease-like neuronal ac-tau•Neurodegenerative brain injury is reflected by ac-tau blood levels in mice and people•Decreasing ac-tau after brain injury at multiple signaling nodes is neuroprotective•Ac-tau-inhibiting medicines are associated with reduced neurodegenerative diseaseReducing brain injury-induced neuronal tau acetylation is neuroprotective in traumatic brain injury and has a role in Alzheimer’s disease pathogenesis