48 research outputs found

    Poezijos vakaras

    No full text
    Vytauto Didžiojo universitetasŽemės ūkio akademij

    Agrocheminis žemėlapis

    No full text
    Vytauto Didžiojo universitetasŽemės ūkio akademij

    Dirvožemio manganingumas

    No full text
    Vytauto Didžiojo universitetasŽemės ūkio akademij

    Dirvožemio jodingumas

    No full text
    Vytauto Didžiojo universitetasŽemės ūkio akademij

    How can microwave heating contribute to the development of zeolite membranes

    No full text
    In this work the growth of both a zeolite (MFI) and a zeolite-like material (SOD) were investigated in/on αAlO tubular support, using hydrothermal conditions and microwave (MW) heating. The method reveals efficient for the rapid synthesis of MFI/αAlO membranes although gentle conditions were required in order to limit the thermal degradation of the template. Promising results were also obtained for directly growing SOD in/on the support. In both MFI and SOD MW synthesis the chemical dissolution of the αAlO support influences the final membrane characteristics. In the case of SOD synthesis, this phenomena which increases with both temperature and support size, alters the membrane homogeneity (composition and structure). In order to get round it, MWs were used to prepare SOD small crystals which were deposited on/in the αAlO support and submitted to a secondary growth. Homogeneous membranes were then obtained whose ideal selectivities αH/N and αHe/N reaches respectively 4.5 at 20°C and 6.2 at 115°C (these selectivities are lower than 2 for a ZSM-5 membrane in similar conditions)

    Méthode de synthèse robuste de membranes zéolithes MFI et prediction de leurs performance pour la séparation éthanol/eau par pervaporation

    No full text
    International audienceDans ce travail, un protocole robuste a été mis au point pour la synthèse à grande échelle demembranes zéolithes MFI (silicalite-1) sur des supports céramiques industriels. La méthode estbasée sur la synthèse hydrothermale de nano-germes de zéolithe par chauffage micro-ondes,leur dépôt sur le support, suivi par la croissance secondaire assistée par chauffage classique.Les performances des membranes MFI ont été validées pour l'extraction d'éthanol dans l’eaupar pervaporation.Une variété de supports commerciaux tubulaires en céramique fournis par Pall-Exekia,Inocermic, CTI, Atech, ainsi que des modules multi-capillaires produits par Hyflux CEPArationTechnologies, ont été testés afin de valider la robustesse du protocole de synthèse. Uneattention particulière a également été portée à la diminution des coûts de synthèse (quantité deproduits chimiques, nombre d'étapes de synthèse, recyclage) ainsi que des coûts du contrôlede qualité (méthodes simples de contrôle de l'homogénéité des membranes et de lareproductibilité de leurs performances).La formation de membranes homogènes (observée par FESEM) a été confirmée sur tous lestypes de supports, y compris sur les tubulaires mono ou multi-canaux et sur les assemblagesmulti-capillaires (20 cm de long). Afin d’optimiser les synthèses et de les valider sur cessupports industriels, une méthode simple et rapide a dû être développée pour prédire lesperformances des membranes pour l’extraction de l’éthanol dans l’eau. L’objectif était d’éviter,pendant cette étape de screening, la mise en oeuvre de protocoles complexes et coûteuxnécessitant une analyse de mélanges à l’échelle semi-industrielle. Dans ce cadre, unecorrélation originale a été mise en évidence entre la sélectivité des membranes en perméancedes gaz purs N2 et SF6 et le facteur de séparation éthanol/eau en pervaporation. Ainsi, les performances des membranes de silicalite-1 (S-1) pour la séparation de mélanges éthanol/eaus’avèrent être directement prévisibles à partir de valeurs de permsélectivités idéales a*(N2/SF6): par exemple un facteur de séparation éthanol/eau d’environ 60 (avec un flux d’éthanol de ~1,1kg.m-2s-1) est typiquement attendu pour une permsélectivité a*(N2/SF6) supérieure à 100. Lacourbe de corrélation empirique a ainsi permis d’optimiser à moindre coût les conditions desynthèse pour l’obtention de modules industriels intégrant des membranes organophilesperformantes pour l'extraction d’éthanol

    Membrane adhesives

    No full text
    The adhesive seal between membranes and their housing has a vital role to play in any membrane application, as it ensures the product and feed streams do not mix and that pressure can be maintained. In many applications, the adhesive seal is a major source of membrane module failure and can dictate the operational life of a module. Hence, understanding adhesives in membrane systems is fundamental in ensuring both separation performance and durability; however, this field has been widely overlooked in the literature. This paper attempts to rectify this by discussing in depth adhesive theory and factors that will maximize the adhesion strength, relative to membrane technology. Also highlighted are specific membrane factors that lead to adhesive failure, important when designing a module. The performance of different adhesives is then presented, based on their ability to adhere to different substrates and their resistance to environmental factors. They are discussed and compared relative to the wide range of polymeric and inorganic membrane systems that are currently commercialized or under research. The conclusion raises the possibility of future research in membrane adhesives, as membrane specific developments in the adhesion field have the potential to increase the durability and environmental resistance of membrane modules

    Catalytic investigation of in situ generated Ni metal nanoparticles for tar conversion during biomass pyrolysis

    No full text
    In order to promote process intensification in syngas production from biomass gasification, our research team has already considered the integration of transition metal-based nanocatalysts in the biomass feedstock through its impregnation with metal salt aqueous solutions. The purpose of this work is to provide new insights into the complex physicochemical and catalytic mechanisms involved in this catalytic pathway from nickel salt. Applying a primary vacuum during impregnation allowed the rate of nickel insertion to be optimized and the generation of strong interactions between the metal cations and the lignocellulosic matrix. During biomass pyrolysis, Ni nanoparticles (NPs) form in situ below 500 C through carbothermal reduction and provide the active sites for adsorption of aromatic hydrocarbons and subsequent catalytic conversion. In order to test whether it was possible to improve the catalytic efficiency of Ni NPs by making them available right from the pyrolysis onset, some preformed Ni NPs were inserted into the biomass prior to pyrolysis. The in situ generated Ni NPs exhibit higher catalytic efficiency, particularly for aromatic tar conversion, than preformed Ni NPs. The high decrease in hard-to-destroy aromatic hydrocarbons formation during pyrolysis is of particular interest in the overall gasification process. The proposed catalytic strategy reveals promising for simplifying the cleaning up of the producer gas
    corecore