42 research outputs found
Dietary modifiers of carcinogenesis.
Dietary components express a wide range of activities that can affect carcinogenesis. Naturally occurring substances in foods have been shown in laboratory experiments to serve as dietary antimutagens, either as bioantimutagens or as desmutagens. Dietary desmutagens may function as chemical inactivaters, enzymatic inducers, scavengers, or antioxidants. Dietary components may also act later in the carcinogenic process as tumor growth suppressors. Examples of dietary factors acting in each of these stages of carcinogenesis are presented, and potential anticarcinogens such as the carotenoids, tocopherols, phenolic compounds, glucosinolates, metal-binding proteins, phytoestrogens, and conjugated linoleic acid are discussed. Individual foods typically contain multiple potential anticarcinogens. Many of these substances can influence carcinogenesis through more than one mechanism. Some substances exhibit both anticarcinogenic and carcinogenic activity in vitro, depending on conditions. Epidemiologic research indicates that high fruit and vegetable consumption is associated with lower cancer risk. Little research has focused on the effects of single substances or single foods in man. Realization of the potential of foodborne substances to reduce the human burden of cancer will only be achieved with better measurement of dietary exposures and funding of multidisciplinary research in this area commensurate with its importance
The TA Framework: Designing Real-time Teaching Augmentation for K-12 Classrooms
Recently, the HCI community has seen increased interest in the design of
teaching augmentation (TA): tools that extend and complement teachers'
pedagogical abilities during ongoing classroom activities. Examples of TA
systems are emerging across multiple disciplines, taking various forms: e.g.,
ambient displays, wearables, or learning analytics dashboards. However, these
diverse examples have not been analyzed together to derive more fundamental
insights into the design of teaching augmentation. Addressing this opportunity,
we broadly synthesize existing cases to propose the TA framework. Our framework
specifies a rich design space in five dimensions, to support the design and
analysis of teaching augmentation. We contextualize the framework using
existing designs cases, to surface underlying design trade-offs: for example,
balancing actionability of presented information with teachers' needs for
professional autonomy, or balancing unobtrusiveness with informativeness in the
design of TA systems. Applying the TA framework, we identify opportunities for
future research and design.Comment: to be published in Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, 17 pages, 10 figure
Community advisory boards guiding engaged research efforts within a clinical translational sciences award: Key contextual factors explored
Background: Engaging stakeholders in research carries the promise of enhancing the research relevance, transparency, and speed of getting findings into practice. By describing the context and functional aspects of stakeholder groups, like those working as community advisory boards (CABs), others can learn from these experiences and operationalize their own CABs. Our objective is to describe our experiences with diverse CABs affiliated with our community engagement group within our institution’s Clinical Translational Sciences Award (CTSA). We identify key contextual elements that are important to administering CABs. Methods: A group of investigators, staff, and community members engaged in a 6-month collaboration to describe their experiences of working with six research CABs. We identified the key contextual domains that illustrate how CABS are developed and sustained. Two lead authors, with experience with CABs and identifying contextual domains in other work, led a team of 13 through the process. Additionally, we devised a list of key tips to consider when devising CABs. Results: The final domains include (1) aligned missions among stakeholders (2) resources/support, (3) defined operational processes/shared power, (4) well-described member roles, and (5) understanding and mitigating challenges. The tips are a set of actions that support the domains. Conclusions: Identifying key contextual domains was relatively easy, despite differences in the respective CAB’s condition of focus, overall mission, or patient demographics represented. By contextualizing these five domains, other research and community partners can take an informed approach to move forward with CAB planning and engaged research
Biomarkers for Severity of Spinal Cord Injury in the Cerebrospinal Fluid of Rats
One of the major challenges in management of spinal cord injury (SCI) is that the assessment of injury severity is often imprecise. Identification of reliable, easily quantifiable biomarkers that delineate the severity of the initial injury and that have prognostic value for the degree of functional recovery would significantly aid the clinician in the choice of potential treatments. To find such biomarkers we performed quantitative liquid chromatography-mass spectrometry (LC-MS/MS) analyses of cerebrospinal fluid (CSF) collected from rats 24 h after either a moderate or severe SCI. We identified a panel of 42 putative biomarkers of SCI, 10 of which represent potential biomarkers of SCI severity. Three of the candidate biomarkers, Ywhaz, Itih4, and Gpx3 were also validated by Western blot in a biological replicate of the injury. The putative biomarkers identified in this study may potentially be a valuable tool in the assessment of the extent of spinal cord damage
Decoupling Contributions from Canopy Structure and Leaf Optics is Critical for Remote Sensing Leaf Biochemistry (Reply to Townsend, et al.)
Townsend et al. (1) agree that we explained that the apparent relationship (2) between foliar nitrogen (%N) and near-infrared (NIR) canopy reflectance was largely attributable to structure (which is in turn caused by variation in fraction of broadleaf canopy). Our conclusion that the observed correlation with %N was spurious (i.e., lacking a causal basis) is, thus, clearly justified: we demonstrated that structure explained the great majority of observed correlation, where the structural influence was derived precisely via reconciling the observed correlation with radiative-transfer theory. What this also suggests is that such correlations, although observed, do not uniquely provide information on canopy biochemical constituents