5 research outputs found

    The footprints of stellar evolution on the chemical composition of the Galactic old open cluster M67

    Get PDF
    In this work we investigate how stellar evolutionary processes change the surface chemical composition of stars. As a test-bench, we use the old open cluster M67, for whose stars high-resolution spectroscopic data are available in many different evolutionary stages, from the main sequence to the red clump. In particular, we use data retrieved from the archives of large spectroscopic surveys such as APOGEE and Gaia-ESO. First we investigate the effects of the so-called first dredge-up on the surface [C/N] abundance of M67 stars. We then analyse variations in the surface abundances of several elements from the main-sequence to the red-giant phase of M67 stars and discuss how these can be explained by atomic diffusion effects. We also present the results of these investigations in the broader context of Galactic archaeology studies. Furthermore, we investigate the chemical composition of three blue straggler stars and two evolved blue straggler stars in M67 in order to find hints for their formation scenario and discuss the results from the point of view of stellar evolution. Finally, we present an experiment based on TGAS data for the study of the dynamical evolution of OB associations

    The IMF as a function of supersonic turbulence

    Get PDF
    Recent studies seem to suggest that the stellar initial mass function (IMF) in early-type galaxies might be different from a classical Kroupa or Chabrier IMF, i.e. contain a larger fraction of the total mass in low-mass stars. From a theoretical point of view, supersonic turbulence has been the subject of interest in many analytical theories proposing a strong correlation with the characteristic mass of the core mass function (CMF) in star forming regions, and as a consequence with the stellar IMF. Performing two suites of smoothed particles hydrodynamics (SPH) simulations with different mass resolutions, we aim at testing the effects of variations in the turbulent properties of a dense, star forming molecular cloud on the shape of the system mass function in different density regimes. While analytical theories predict a shift of the peak of the CMF towards lower masses with increasing velocity dispersion of the cloud, we observe in the low-density regime the opposite trend, with high Mach numbers giving rise to a top-heavy mass distribution. For the high-density regime we do not find any trend correlating the Mach number with the characteristic mass of the resulting IMF, implying that the dynamics of protostellar accretion discs and fragmentation on small scales is not strongly affected by turbulence driven at the scale of the cloud. Furthermore, we suggest that a significant fraction of dense cores are disrupted by turbulence before stars can be formed in their interior through gravitational collapse. Although this particular study has limitations in its numerical resolution, we suggest that our results, along with those from other studies, cast doubt on the turbulent fragmentation models on the IMF that simply map the CMF to the IMF.Comment: 12 pages, 7 figures, accepted by MNRA

    Observing the products of stellar evolution in the old open cluster M67 with APOGEE

    Get PDF
    © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society Recent works have shown how the [C/N] ratio in stars after the first dredge-up (FDU) can be used as an age estimator in virtue of its dependence on stellar mass. For this purpose, precise predictions of the surface chemical composition before and after the mixing takes place in the convective envelope of subgiant stars are necessary. Stellar evolution models can provide us with such predictions, although a comparison with objects of known age is needed for calibration. Open clusters are excellent test cases, as they represent a single stellar population for which the age can be derived through, e.g. isochrone fitting. In this study, we present a detailed analysis of stars belonging to the well-known open cluster M67 observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey in the twelfth data release of the Sloan Digital Sky Survey and whose chemical properties were derived with the APOGEE Stellar Parameters and Chemical Abundances Pipeline. We find that the [C/N] abundance of subgiant branch stars is overestimated by ∼0.2 dex due to an offset in the determination of the [N/Fe] abundance. Stars on the red giant branch and red clump are shown not to be affected by this offset. We derive [C/N]FDU = −0.46 ± 0.03 dex, which poses a strong constraint on calibrations of [C/N]FDU as age indicator. We also do not find any clear signature of additional chemical mixing processes that set in after the red giant branch bump. The results obtained for M67 indicate the importance of conducting high-resolution spectroscopic studies of open clusters of different ages in order to establish an accurate age-dating method for field stars

    A chemical study of M67 candidate blue stragglers and evolved blue stragglers observed with APOGEE DR14

    No full text
    International audienceWithin the variety of objects populating stellar clusters, blue straggler stars (BSSs) are among the most puzzling ones. BSSs are commonly found in globular clusters, but they are also known to populate open clusters of the Milky Way. Two main theoretical scenarios (collisions and mass transfer) have been suggested to explain their formation, although finding observational evidence in support of either scenario represents a challenging task. Among the APOGEE observations of the old open cluster M67, we found eight BSS candidates known from the literature and two known evolved BSSs. We carried out a chemical analysis of three BSS candidates and of the two evolved BSSs out of the sample and found that the BSS candidates have surface abundances similar to those of stars on the main-sequence turn-off of M67. Especially the absence of any anomaly in their carbon abundances seems to support a collisional formation scenario for these stars. Furthermore, we note that the abundances of the evolved BSSs S1040 and S1237 are consistent with the abundances of the red clump stars of M67. In particular, they show a depletion in carbon by ˜0.25 dex, which could be either interpreted as the signature of mass transfer or as the product of stellar evolutionary processes. Finally, we summarize the properties of the individual BSSs observed by APOGEE, as derived from their APOGEE spectra and/or from information available in the literature
    corecore