425 research outputs found

    Searching for the Slater Transition in the Pyrochlore Cd2_{2}Os2_{2}O7_{7} with Infrared Spectroscopy

    Full text link
    Infrared reflectance measurements were made on the single crystal pyrochlore Cd2_{2}Os2_{2}O7_{7} in order to examine the transformations of the electronic structure and crystal lattice across the boundary of the metal insulator transition at TMIT=226KT_{MIT}=226K. All predicted IR active phonons are observed in the conductivity over all temperatures and the oscillator strength is found to be temperature independent. These results indicate that charge ordering plays only a minor role in the MIT and that the transition is strictly electronic in nature. The conductivity shows the clear opening of a gap with 2Δ=5.2kBTMIT2\Delta=5.2k_{B}T_{MIT}. The gap opens continuously, with a temperature dependence similar to that of BCS superconductors, and the gap edge having a distinct σ(ω)ω1/2\sigma(\omega)\thicksim\omega^{1/2} dependence. All of these observables support the suggestion of a Slater transition in Cd2_{2}% Os2_{2}O7_{7}.Comment: 4 pages, 4 figure

    A smac mimetic reduces TNF related apoptosis inducing ligand (TRAIL)-induced invasion and metastasis of cholangiocarcinoma cells.

    Get PDF
    UNLABELLED: Cholangiocarcinoma (CCA) cells paradoxically express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a death ligand that, failing to kill CCA cells, instead promotes their tumorigenicity and especially the metastatic behaviors of cell migration and invasion. Second mitochondria-derived activator of caspase (smac) mimetics are promising cancer therapeutic agents that enhance proapoptotic death receptor signaling by causing cellular degradation of inhibitor of apoptosis (IAP) proteins. Our aim was to examine the in vitro and in vivo effects of the smac mimetic JP1584 in CCA. Despite JP1584-mediated loss of cellular inhibitor of apoptosis-1 (cIAP-1) and cIAP-2, TRAIL failed to induce apoptosis in KMCH-1, TFK-1, and BDEneu CCA cells; a finding consistent with a downstream block in death signaling. Because cIAP-1 and cIAP-2 also promote nuclear factor kappa B (NF-kappaB) activation by the canonical pathway, the effect of JP1584 on this signaling pathway was examined. Treatment with JP1584 inhibited TRAIL-induced NF-kappaB activation as well as TRAIL-mediated up-regulation of the NF-kappaB target gene, matrix metalloproteinase 7 (MMP7). JP1584 also reduced TRAIL-mediated CCA cell migration and invasion in vitro. Finally, in a syngeneic rat orthotopic CCA model, JP1584 administration reduced MMP7 messenger RNA levels and extrahepatic metastases. CONCLUSION: : Although the smac mimetic JP1584 does not sensitize cells to apoptosis, it reduces TRAIL-induced CCA cell metastatic behavior. These data support the emerging concept that IAPs are prometastatic and represent targets for antimetastatic therapies

    On the statistical significance of the conductance quantization

    Full text link
    Recent experiments on atomic-scale metallic contacts have shown that the quantization of the conductance appears clearly only after the average of the experimental results. Motivated by these results we have analyzed a simplified model system in which a narrow neck is randomly coupled to wide ideal leads, both in absence and presence of time reversal invariance. Based on Random Matrix Theory we study analytically the probability distribution for the conductance of such system. As the width of the leads increases the distribution for the conductance becomes sharply peaked close to an integer multiple of the quantum of conductance. Our results suggest a possible statistical origin of conductance quantization in atomic-scale metallic contacts.Comment: 4 pages, Tex and 3 figures. To be published in PR

    Optical investigation on the electronic structures of Y_{2}Ru_{2}O_{7}, CaRuO_{3}, SrRuO_{3}, and Bi_{2}Ru_{2}O_{7}

    Full text link
    We investigated the electronic structures of the bandwidth-controlled ruthenates, Y2_{2}Ru2_{2}O7_{7}, CaRuO3_{3}, SrRuO3_{3}, and Bi2_{2}Ru2% _{2}O7_{7}, by optical conductivity analysis in a wide energy region of 5 meV \sim 12 eV. We could assign optical transitions from the systematic changes of the spectra and by comparison with the O 1ss x-ray absorption data. We estimated some physical parameters, such as the on-site Coulomb repulsion energy and the crystal-field splitting energy. These parameters show that the 4dd orbitals should be more extended than 3dd ones. These results are also discussed in terms of the Mott-Hubbard model.Comment: 12 pages (1 table), 3 figure

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Weak Localization Effect in Superconductors by Radiation Damage

    Get PDF
    Large reductions of the superconducting transition temperature TcT_{c} and the accompanying loss of the thermal electrical resistivity (electron-phonon interaction) due to radiation damage have been observed for several A15 compounds, Chevrel phase and Ternary superconductors, and NbSe2\rm{NbSe_{2}} in the high fluence regime. We examine these behaviors based on the recent theory of weak localization effect in superconductors. We find a good fitting to the experimental data. In particular, weak localization correction to the phonon-mediated interaction is derived from the density correlation function. It is shown that weak localization has a strong influence on both the phonon-mediated interaction and the electron-phonon interaction, which leads to the universal correlation of TcT_{c} and resistance ratio.Comment: 16 pages plus 3 figures, revtex, 76 references, For more information, Plesse see http://www.fen.bilkent.edu.tr/~yjki

    Small Polarons in Transition Metal Oxides

    Full text link
    The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first principles schemes in order to predict, understand and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore