6,170 research outputs found

    Failure of classical elasticity in auxetic foams

    Full text link
    A recent derivation [P.H. Mott and C.M. Roland, Phys. Rev. B 80, 132104 (2009).] of the bounds on Poisson's ratio, v, for linearly elastic materials showed that the conventional lower limit, -1, is wrong, and that v cannot be less than 0.2 for classical elasticity to be valid. This is a significant result, since it is precisely for materials having small values of v that direct measurements are not feasible, so that v must be calculated from other elastic constants. Herein we measure directly Poisson's ratio for four materials, two for which the more restrictive bounds on v apply, and two having values below this limit of 0.2. We find that while the measured v for the former are equivalent to values calculated from the shear and tensile moduli, for two auxetic materials (v < 0), the equations of classical elasticity give inaccurate values of v. This is experimental corroboration that the correct lower limit on Poisson's ratio is 0.2 in order for classical elasticity to apply.Comment: 9 pages, 2 figure

    Doping Dependence of Polaron Hopping Energies in La(1-x)Ca(x)MnO(3) (0<= x<= 0.15)

    Full text link
    Measurements of the low-frequency (f<= 100 kHz) permittivity at T<= 160 K and dc resistivity (T<= 430 K) are reported for La(1-x)Ca(x)MnO(3) (0<= x<= 0.15). Static dielectric constants are determined from the low-T limiting behavior of the permittivity. The estimated polarizability for bound holes ~ 10^{-22} cm^{-3} implies a radius comparable to the interatomic spacing, consistent with the small polaron picture established from prior transport studies near room temperature and above on nearby compositions. Relaxation peaks in the dielectric loss associated with charge-carrier hopping yield activation energies in good agreement with low-T hopping energies determined from variable-range hopping fits of the dc resistivity. The doping dependence of these energies suggests that the orthorhombic, canted antiferromagnetic ground state tends toward an insulator-metal transition that is not realized due to the formation of the ferromagnetic insulating state near Mn(4+) concentration ~ 0.13.Comment: PRB in press, 5 pages, 6 figure

    Fingerprints of intrinsic phase separation: magnetically doped two-dimensional electron gas

    Full text link
    In addition to Anderson and Mott localization, intrinsic phase separation has long been advocated as the third fundamental mechanism controlling the doping-driven metal-insulator transitions. In electronic system, where charge neutrality precludes global phase separation, it may lead to various inhomogeneous states and dramaticahttp://arxiv.org/submit/215787/metadata arXiv Submission metadatally affect transport. Here we theoretically predict the precise experimental signatures of such phase-separation-driven metal-insulator transitions. We show that anomalous transport is expected in an intermediate regime around the transition, displaying very strong temperature and magnetic field dependence, but very weak density dependence. Our predictions find striking agreement with recent experiments on Mn-doped CdTe quantum wells, a system where we identify the microscopic origin for intrinsic phase separation.Comment: 4+epsilon pages, 4 figure

    Magnetoresistance scaling in the layered cobaltate Ca3Co4O9

    Full text link
    We investigate the low temperature magnetic field dependences of both the resistivity and the magnetization in the misfit cobaltate Ca3Co4O9 from 60 K down to 2 K. The measured negative magnetoresistance reveals a scaling behavior with the magnetization which demonstrates a spin dependent diffusion mechanism. This scaling is also found to be consistent with a shadowed metalliclike conduction over the whole temperature range. By explaining the observed transport crossover, this result shed a new light on the nature of the elementary excitations relevant to the transport

    Towards first-principles understanding of the metal-insulator transition in fluid alkali metals

    Full text link
    By treating the electron-ion interaction as perturbation in the first-principles Hamiltonian, we have calculated the density response functions of a fluid alkali metal to find an interesting charge instability due to anomalous electronic density fluctuations occurring at some finite wave vector {\bi Q} in a dilute fluid phase above the liquid-gas critical point. Since |{\bi Q}| is smaller than the diameter of the Fermi surface, this instability necessarily impedes the electric conduction, implying its close relevance to the metal-insulator transition in fluid alkali metals.Comment: 11 pages, 5 figure

    Cartographic research in EREP program for small scale mapping

    Get PDF
    The author has identified the following significant results. Skylab photography is suitable for producing planimetric maps with graphical representation of landform at scales up to 1:100,000. It cannot supply all the detail necessary for maps at this scale, but it may be used to produce a sound framework which can be completed by detail from other sources. Its principal cartographic use is for original mapping of undeveloped areas of the world, but it would also be useful for the revision of existing maps and for monitoring extensive urban changes

    Metal-nonmetal transition in LixCoO2 thin film and thermopower enhancement at high Li concentration

    Full text link
    We investigate the transport properties of LixCoO2 thin films whose resistivities are nearly an order of magnitude lower than those of the bulk polycrystals. A metal-nonmetal transition occurs at ~0.8 in a biphasic domain, and the Seebeck coefficient (S) is drastically increased at ~140 K (= T*) with increasing the Li concentration to show a peak of magnitude ~120 \muV/K in the S-T curve of x = 0.87. We show that T* corresponds to a crossover temperature in the conduction, most likely reflecting the correlation-induced temperature dependence in the low-energy excitations

    Universal Distribution of Kondo Temperatures in Dirty Metals

    Full text link
    Kondo screening of diluted magnetic impurities in a disordered host is studied analytically and numerically in one, two and three dimensions. It is shown that in the T_K \to 0 limit the distribution of Kondo temperatures has a universal form, P(T_K) \sim T_K^{-\alpha} that holds in the insulating phase and persists in the metallic phase close to the metal insulator transition. Moreover, the exponent \alpha depends only on the dimensionality. The most important consequence of this result is that the T-dependence of thermodynamic properties is smooth across the metal-insulator transition in three dimensional systems.Comment: 4 pages, 3 figures; added referenc

    Construction of Non-Perturbative, Unitary Particle-Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms

    Full text link
    Starting from a unitary, Lorentz invariant two-particle scattering amplitude , we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel non-perturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the non-relativistic Coulomb problem, including the forward scattering singularity, the essential singularity in the phase, and the Bohr bound-state spectrum
    • …
    corecore