4 research outputs found

    Predictions of Heat Transfer and Flow Circulations in Differentially Heated Liquid Columns With Applications to Low-Pressure Evaporators

    Get PDF
    Numerical computations are presented for the temperature and velocity distributions of two differentially heated liquid columns with liquor depths of 0.1 m and 2.215 m, respectively. The temperatures in the liquid columns vary considerably with respect to position for pure conduction, free convection, and nucleate boiling cases using one-dimensional (1D) thermal resistance networks. In the thermal resistance networks the solutions are not sensitive to the type of condensing and boiling heat transfer coefficients used. However, these networks are limited and give no indication of velocity distributions occurring within the liquor. To alleviate this issue, two-dimensional (2D) axisymmetric and three-dimensional (3D) computational fluid dynamics (CFD) simulations of the test rigs have been performed. The axisymmetric conditions of the 2D simulations produce unphysical solutions; however, the full 3D simulations do not exhibit these behaviors. There is reasonable agreement for the predicted temperatures, heat fluxes, and heat transfer coefficients when comparing the boiling case of the 1D thermal resistance networks and the CFD simulations

    Development of High-Specificity Fluorescent Probes to Enable Cannabinoid Type 2 Receptor Studies in Living Cells

    Get PDF
    Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous con-ditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this re-ceptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent context. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across ap-plications, species and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease
    corecore