97 research outputs found
Dwelling in Strangeness: accounts of the Kingsley Hall Community, London (1965-1970)
This article explores archival accounts of the experimental community, Kingsley Hall (1965-70), established by R. D. Laing, the radical Scottish psychiatrist. The paper contributes to renewed interest in Kingsley Hall, R. D. Laing's radical psychiatry and UK counterculture. Archival sources enable not only the further exploration of already known figures but also let us hear previously unheard voices. Following a discussion of archival materials, the Hall is analyzed thematically and historically as (i) an inner spaceship; (ii) an embattled middle-class countercultural plantation; (iii) a site of spiritual renewal and development; (iv) a single-building arts colony; and (v) a countercultural experiment. Finally, it is argued that with re-evaluation of 1960s and 1970s counterculture now underway on the Left, the Hall’s experiment in Laingian countercultural psychiatry—as we may fittingly call it—may yet inform future radical projects (in mental health and beyond)
Protection of early phase hepatic ischemia-reperfusion injury by cholinergic agonists
BACKGROUND: Cytokine production is critical in ischemia/reperfusion (IR) injury. Acetylcholine binds to macrophages and inhibits cytokine synthesis, through the cholinergic anti-inflammatory pathway. This study examined the role of the cholinergic pathway in cytokine production and hepatic IR- injury. METHODS: Adult male mice underwent 90-min of partial liver ischemia followed by reperfusion. The AChR agonists (1,1-dimethyl-4-phenyl-L-pioperazinium-iodide [DMPP], and nicotine) or saline-vehicle were administered i.p. before ischemia. Plasma cytokine tumor necrosis factor (TNF)-α, macrophage inflammatory protein-2, and Interleukin-6 were measured. Liver injury was assessed by plasma alanine transaminase (ALT) and liver histopathology. RESULTS: A reperfusion time-dependent hepatocellular injury occurred as was indicated by increased plasma-ALT and histopathology. The injury was associated with marked elevation of plasma cytokines/chemokines. Pre-ischemic treatment of mice with DMPP or nicotine significantly decreased plasma-ALT and cytokines after 3 h of reperfusion. After 6 h of reperfusion, the protective effect of DMPP decreased and reached a negligible level by 24 h of reperfusion, despite significantly low levels of plasma cytokines. Histopathology showed markedly diminished hepatocellular injury in DMPP- and nicotine-pretreated mice during the early-phase of hepatic-IR, which reached a level comparable to saline-treated mice at late-phase of IR. CONCLUSION: Pharmacological modulation of the cholinergic pathway provides a means to modulate cytokine production and to delay IR-induced heaptocellular injury
Activin signaling as an emerging target for therapeutic interventions
After the initial discovery of activins as important regulators of reproduction, novel and diverse roles have been unraveled for them. Activins are expressed in various tissues and have a broad range of activities including the regulation of gonadal function, hormonal homeostasis, growth and differentiation of musculoskeletal tissues, regulation of growth and metastasis of cancer cells, proliferation and differentiation of embryonic stem cells, and even higher brain functions. Activins signal through a combination of type I and II transmembrane serine/threonine kinase receptors. Activin receptors are shared by multiple transforming growth factor-β (TGF-β) ligands such as myostatin, growth and differentiation factor-11 and nodal. Thus, although the activity of each ligand is distinct, they are also redundant, both physiologically and pathologically in vivo. Activin receptors activated by ligands phosphorylate the receptor-regulated Smads for TGF-β, Smad2 and 3. The Smad proteins then undergo multimerization with the co-mediator Smad4, and translocate into the nucleus to regulate the transcription of target genes in cooperation with nuclear cofactors. Signaling through receptors and Smads is controlled by multiple mechanisms including phosphorylation and other posttranslational modifications such as sumoylation, which affect potein localization, stability and transcriptional activity. Non-Smad signaling also plays an important role in activin signaling. Extracellularly, follistatin and related proteins bind to activins and related TGF-β ligands, and control the signaling and availability of ligands
Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging
La relation d'aide en r\ue9adaptation: lorsque la technologie ne suffit pas
Il s'agit de l'importance de la relatione therapeutique en psychiatri
- …