112 research outputs found
Automated Absorber Attachment for X-ray Microcalorimeter Arrays
Our goal is to develop a method for the automated attachment of large numbers of absorber tiles to large format detector arrays. This development includes the fabrication of high quality, closely spaced HgTe absorber tiles that are properly positioned for pick-and-place by our FC150 flip chip bonder. The FC150 also transfers the appropriate minute amount of epoxy to the detectors for permanent attachment of the absorbers. The success of this development will replace an arduous, risky and highly manual task with a reliable, high-precision automated process
Compact Magic-T using microstrip-slotline transitions
The design of a compact low-loss Magic-T is described. The planar Magic-T incorporates a compact microstrip-slotline tee junction and small microstrip-slotline transition area to reduce slotline radiation. The Magic-T produces broadband in-phase and out-of-phase power combiner/divider responses, has low in-band insertion loss, and small in-band phase and amplitude imbalance
Interferometric Polarization Control
A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid
A Compact Low-loss Magic-T using Microstrip-Slotline Transitions
The design of a compact low-loss magic-T is proposed. The planar magic-T incorporates the compact microstrip-slotline tee junction and small microstrip-slotline transition area to reduce slotline radiation. The experimental results show that the magic-T produces broadband in-phase and out-of-phase power combiner/divider responses, has an average in-band insertion loss of 0.3 dB and small in-band phase and amplitude imbalance of less than plus or minus 1.6 deg. and plus or minus 0.3 dB, respectively
Superconducting Films for Absorber-Coupled MKID Detectors for Sub-Millimeter and Far-Infrared Astronomy
We describe measurements of the properties, at dc, gigahertz, and terahertz frequencies, of thin (10 nm) aluminum films with 10 ohm/{rm square}$ normal state sheet resistance. Such films can be applied to construct microwave kinetic inductance detector arrays for submillimeter and far-infrared astronomical applications in which incident power excites quasiparticles directly in a superconducting resonator that is configured to present a matched-impedance to the high frequency radiation being detected. For films 10 nm thick, we report normal state sheet resistance, resistance-temperature curves for the superconducting transition, quality factor and kinetic inductance fraction for microwave resonators made from patterned films, and terahertz measurements of sheet impedance measured with a Fourier Transform Spectrometer. We compare properties with similar resonators made from niobium 600 nm thick
Precision control of thermal transport in cryogenic single-crystal silicon devices
We report on the diffusive-ballistic thermal conductance of multi-moded
single-crystal silicon beams measured below 1 K. It is shown that the phonon
mean-free-path is a strong function of the surface roughness
characteristics of the beams. This effect is enhanced in diffuse beams with
lengths much larger than , even when the surface is fairly smooth, 5-10
nm rms, and the peak thermal wavelength is 0.6 m. Resonant phonon
scattering has been observed in beams with a pitted surface morphology and
characteristic pit depth of 30 nm. Hence, if the surface roughness is not
adequately controlled, the thermal conductance can vary significantly for
diffuse beams fabricated across a wafer. In contrast, when the beam length is
of order , the conductance is dominated by ballistic transport and is
effectively set by the beam area. We have demonstrated a uniformity of 8%
in fractional deviation for ballistic beams, and this deviation is largely set
by the thermal conductance of diffuse beams that support the
micro-electro-mechanical device and electrical leads. In addition, we have
found no evidence for excess specific heat in single-crystal silicon membranes.
This allows for the precise control of the device heat capacity with normal
metal films. We discuss the results in the context of the design and
fabrication of large-format arrays of far-infrared and millimeter wavelength
cryogenic detectors
Scalable background-limited polarization-sensitive detectors for mm-wave applications
We report on the status and development of polarization-sensitive detectors
for millimeter-wave applications. The detectors are fabricated on
single-crystal silicon, which functions as a low-loss dielectric substrate for
the microwave circuitry as well as the supporting membrane for the
Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is
realized as a symmetric structure and on-chip filters are employed to define
the detection bandwidth. A hybridized integrated enclosure reduces the
high-frequency THz mode set that can couple to the TES bolometers. An
implementation of the detector architecture at Q-band achieves 90% efficiency
in each polarization. The design is scalable in both frequency coverage, 30-300
GHz, and in number of detectors with uniform characteristics. Hence, the
detectors are desirable for ground-based or space-borne instruments that
require large arrays of efficient background-limited cryogenic detectors.Comment: 7 pages, 3 figures, Presented at SPIE Astronomical Telescopes and
Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors
and Instrumentation for Astronomy VII. To be published in Proceedings of SPIE
Volume 915
Fabrication and Sub-Assembly of Electrostatically Actuated Silicon Nitride Microshutter Arrays
We have developed a new microshutter array (MSA) subassembly. The MSA and a silicon substrate are flip-bonded together. The MSA has a new back side fabrication process to actuate the microshutters electrostatically, and the new silicon substrate has light shields. The microshutters with a pixel size of 100 x 200 sq micrometers are fabricated on silicon with thin silicon nitride membranes. The microshutters rotate 90 deg on torsion bars. The selected microshutters are actuated, held, and addressed electrostatically by applying voltages on the electrodes the front and back sides of the microshutters. The substrate has the light shield to block lights around the microshutters. Also, electrical connections are made from the MSA to a controller board via the substrate
Silicon-Based Antenna-Coupled Polarization-Sensitive Millimeter-Wave Bolometer Arrays for Cosmic Microwave Background Instruments
We describe feedhorn-coupled polarization-sensitive detector arrays that
utilize monocrystalline silicon as the dielectric substrate material.
Monocrystalline silicon has a low-loss tangent and repeatable dielectric
constant, characteristics that are critical for realizing efficient and uniform
superconducting microwave circuits. An additional advantage of this material is
its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES)
bolometers are antenna-coupled to in-band radiation via a symmetric planar
orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a
separate superconducting microstrip transmission line circuit. On-chip
filtering is employed to both reject out-of-band radiation from the upper band
edge to the gap frequency of the niobium superconductor, and to flexibly define
the bandwidth for each TES to meet the requirements of the application. The
microwave circuit is compatible with multi-chroic operation. Metalized silicon
platelets are used to define the backshort for the waveguide probes. This
micro-machined structure is also used to mitigate the coupling of out-of-band
radiation to the microwave circuit. At 40 GHz, the detectors have a measured
efficiency of 90%. In this paper, we describe the development of the 90 GHz
detector arrays that will be demonstrated using the Cosmology Large Angular
Scale Surveyor (CLASS) ground-based telescope
- …