2,151 research outputs found
Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures
We report on resonant tunneling magnetoresistance via localized states
through a ZnSe semiconducting barrier which can reverse the sign of the
effective spin polarization of tunneling electrons. Experiments performed on
Fe/ZnSe/Fe planar junctions have shown that positive, negative or even its
sign-reversible magnetoresistance can be obtained, depending on the bias
voltage, the energy of localized states in the ZnSe barrier and spatial
symmetry. The averaging of conduction over all localized states in a junction
under resonant condition is strongly detrimental to the magnetoresistance
MEMPHYS:A large scale water Cerenkov detector at Fr\'ejus
A water \v{C}erenkov detector project, of megaton scale, to be installed in
the Fr\'ejus underground site and dedicated to nucleon decay, neutrinos from
supernovae, solar and atmospheric neutrinos, as well as neutrinos from a
super-beam and/or a beta-beam coming from CERN, is presented and compared with
competitor projects in Japan and in the USA. The performances of the European
project are discussed, including the possibility to measure the mixing angle
and the CP-violating phase .Comment: 1+33 pages, 14 figures, Expression of Interest of MEMPHYS projec
Restrictions on Transversal Encoded Quantum Gate Sets
Transversal gates play an important role in the theory of fault-tolerant
quantum computation due to their simplicity and robustness to noise. By
definition, transversal operators do not couple physical subsystems within the
same code block. Consequently, such operators do not spread errors within code
blocks and are, therefore, fault tolerant. Nonetheless, other methods of
ensuring fault tolerance are required, as it is invariably the case that some
encoded gates cannot be implemented transversally. This observation has led to
a long-standing conjecture that transversal encoded gate sets cannot be
universal. Here we show that the ability of a quantum code to detect an
arbitrary error on any single physical subsystem is incompatible with the
existence of a universal, transversal encoded gate set for the code.Comment: 4 pages, v2: minor change
Approximating Fractional Time Quantum Evolution
An algorithm is presented for approximating arbitrary powers of a black box
unitary operation, , where is a real number, and
is a black box implementing an unknown unitary. The complexity of
this algorithm is calculated in terms of the number of calls to the black box,
the errors in the approximation, and a certain `gap' parameter. For general
and large , one should apply a total of times followed by our procedure for approximating the fractional
power . An example is also given where for
large integers this method is more efficient than direct application of
copies of . Further applications and related algorithms are also
discussed.Comment: 13 pages, 2 figure
Características morfológicas e fitossanitárias de variedades de roseira na etapa de classificação.
Background discrimination capabilities of a heat and ionization germanium cryogenic detector
The discrimination capabilities of a 70 g heat and ionization Ge bolometer
are studied. This first prototype has been used by the EDELWEISS Dark Matter
experiment, installed in the Laboratoire Souterrain de Modane, for direct
detection of WIMPs. Gamma and neutron calibrations demonstrate that this type
of detector is able to reject more than 99.6% of the background while retaining
95% of the signal, provided that the background events distribution is not
biased towards the surface of the Ge crystal. However, the 1.17 kg.day of data
taken in a relatively important radioactive environment show an extra
population slightly overlapping the signal. This background is likely due to
interactions of low energy photons or electrons near the surface of the
crystal, and is somewhat reduced by applying a higher charge-collecting inverse
bias voltage (-6 V instead of -2 V) to the Ge diode. Despite this
contamination, more than 98% of the background can be rejected while retaining
50% of the signal. This yields a conservative upper limit of 0.7
event.day^{-1}.kg^{-1}.keV^{-1}_{recoil} at 90% confidence level in the 15-45
keV recoil energy interval; the present sensitivity appears to be limited by
the fast ambient neutrons. Upgrades in progress on the installation are
summarized.Comment: Submitted to Astroparticle Physics, 14 page
Green function approach for scattering quantum walks
In this work a Green function approach for scattering quantum walks is
developed. The exact formula has the form of a sum over paths and always can be
cast into a closed analytic expression for arbitrary topologies and position
dependent quantum amplitudes. By introducing the step and path operators, it is
shown how to extract any information about the system from the Green function.
The method relevant features are demonstrated by discussing in details an
example, a general diamond-shaped graph.Comment: 13 pages, 6 figures, this article was selected by APS for Virtual
Journal of Quantum Information, Vol 11, Iss 11 (2011
Some Directions beyond Traditional Quantum Secret Sharing
We investigate two directions beyond the traditional quantum secret sharing
(QSS). First, a restriction on QSS that comes from the no-cloning theorem is
that any pair of authorized sets in an access structure should overlap. From
the viewpoint of application, this places an unnatural constraint on secret
sharing. We present a generalization, called assisted QSS (AQSS), where access
structures without pairwise overlap of authorized sets is permissible, provided
some shares are withheld by the share dealer. We show that no more than
withheld shares are required, where is the minimum number
of {\em partially linked classes} among the authorized sets for the QSS. Our
result means that such applications of QSS need not be thwarted by the
no-cloning theorem. Secondly, we point out a way of combining the features of
QSS and quantum key distribution (QKD) for applications where a classical
information is shared by quantum means. We observe that in such case, it is
often possible to reduce the security proof of QSS to that of QKD.Comment: To appear in Physica Scripta, 7 pages, 1 figure, subsumes
arXiv:quant-ph/040720
The EDELWEISS Experiment : Status and Outlook
The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat
and ionisation read- out to identify nuclear recoils induced by elastic
collisions with WIMPs from the galactic halo. Results from the operation of 70
g and 320 g Ge detectors in the low-background environment of the Modane
Underground Laboratory (LSM) are presented.Comment: International Conference on Dark Matter in Astro and Particle Physics
(Dark 2000), Heidelberg, Germany, 10-16 Jul 2000, v3 minor revision
Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo
Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place
- …
