36 research outputs found

    Sexual selection and predation drive the repeated evolution of stridulation in Heteroptera and other arthropods

    Get PDF
    Acoustic and substrate-borne vibrations are among the most widely used signalling modalities in animals. Arthropods display a staggering diversity of vibroacoustic organs generating acoustic sound and/or substrate-borne vibrations, and are fundamental to our broader understanding of the evolution of animal signalling. The primary mechanism that arthropods use to generate vibroacoustic signals is stridulation, which involves the rubbing together of opposing body parts. Although stridulation is common, its behavioural context and evolutionary drivers are often hard to pinpoint, owing to limited synthesis of empirical observations on stridulatory species. This is exacerbated by the diversity of mechanisms involved and the sparsity of their description in the literature, which renders their documentation a challenging task. Here, we present the most comprehensive review to date on the systematic distribution and behavioural context of stridulation. We use the megadiverse heteropteran insects as a model, together with multiple arthropod outgroups (arachnids, myriapods, and selected pancrustaceans). We find that stridulatory vibroacoustic signalling has evolved independently at least 84 times and is present in roughly 20% of Heteroptera, representing a remarkable case of convergent evolution. By studying the behavioural context of stridulation across Heteroptera and 189 outgroup lineages, we find that predation pressure and sexual selection are the main behaviours associated with stridulation across arthropods, adding further evidence for their role as drivers of large-scale signalling and morphological innovation in animals. Remarkably, the absence of tympanal ears in most Heteroptera suggests that they typically cannot detect the acoustic component of their stridulatory signals. This demonstrates that the adoption of new signalling modalities is not always correlated with the ability to perceive those signals, especially when these signals are directed towards interspecific receivers in defensive contexts. Furthermore, by mapping their morphology and systematic distribution, we show that stridulatory organs tend to evolve in specific body parts, likely originating from cleaning motions and pre-copulatory displays that are common to most arthropods. By synthesising our understanding of stridulation and stridulatory organs across major arthropod groups, we create the necessary framework for future studies to explore their systematic and behavioural significance, their potential role in sensory evolution and innovation, and the biomechanics of this mode of signalling

    Convergence in carnivorous pitcher plants reveals a mechanism for composite trait evolution.

    Get PDF
    Composite traits involve multiple components that, only when combined, gain a new synergistic function. Thus, how they evolve remains a puzzle. We combined field experiments, microscopy, chemical analyses, and laser Doppler vibrometry with comparative phylogenetic analyses to show that two carnivorous pitcher plant species independently evolved similar adaptations in three distinct traits to acquire a new, composite trapping mechanism. Comparative analyses suggest that this new trait arose convergently through "spontaneous coincidence" of the required trait combination, rather than directional selection in the component traits. Our results indicate a plausible mechanism for composite trait evolution and highlight the importance of stochastic phenotypic variation as a facilitator of evolutionary novelty

    Remote monitoring of vibrational information in spider webs

    Get PDF
    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal’s body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy

    Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size

    Get PDF
    <div><p>Vibrations through substrates are an important source of information for diverse organisms, from nematodes to elephants. The fundamental challenge for small animals using vibrational communication is to move their limited mass fast enough to provide sufficient kinetic energy for effective information transfer through the substrate whilst optimising energy efficiency over repeated cycles. Here, we describe a vibratory organ found across a commercially important group of plant-feeding insects, the planthoppers (Hemiptera: Fulgoromorpha). This elastic recoil snapping organ generates substrate-borne broadband vibrations using fast, cyclical abdominal motion that transfers kinetic energy to the substrate through the legs. Elastic potential energy is stored and released twice using two different latched energy-storage mechanisms, each utilising a different form of elastic recoil to increase the speed of motion. Comparison to the acoustic tymbal organ of cicadas (Hemiptera: Cicadomorpha) reveals functional convergence in their use of elastic mechanisms to increase the efficacy of mechanical communication.</p></div

    Classifying elephant behaviour through seismic vibrations

    Get PDF
    Seismic waves β€” vibrations within and along the Earth’s surface β€” are ubiquitous sources of information. During propagation, physical factors can obscure information transfer via vibrations and influence propagation range [1]. Here, we explore how terrain type and background seismic noise influence the propagation of seismic vibrations generated by African elephants. In Kenya, we recorded the ground-based vibrations of different wild elephant behaviours, such as locomotion and infrasonic vocalisations [2], as well as natural and anthropogenic seismic noise. We employed techniques from seismology to transform the geophone recordings into source functions β€” the time-varying seismic signature generated at the source. We used computer modelling to constrain the propagation ranges of elephant seismic vibrations for different terrains and noise levels. Behaviours that generate a high force on a sandy terrain with low noise propagate the furthest, over the kilometre scale. Our modelling also predicts that specific elephant behaviours can be distinguished and monitored over a range of propagation distances and noise levels. We conclude that seismic cues have considerable potential for both behavioural classification and remote monitoring of wildlife. In particular, classifying the seismic signatures of specific behaviours of large mammals remotely in real time, such as elephant running, could inform on poaching threats

    Glass transitions in native silk fibres studied by dynamic mechanical thermal analysis

    Get PDF
    Silks are a family of semi-crystalline structural materials, spun naturally by insects, spiders and even crustaceans. Compared to the characteristic Ξ²-sheet crystalline structure in silks, the non-crystalline structure and its composition deserves more attention as it is equally critical to the filaments' high toughness and strength. Here we further unravel the structure-property relationship in silks using Dynamic Mechanical Thermal Analysis (DMTA). This technique allows us to examine the most important structural relaxation event of the disordered structure the disordered structure, the glass transition (GT), in native silk fibres of the lepidopteran Bombyx mori and Antheraea pernyi and the spider Nephila edulis. The measured glass transition temperature Tg, loss tangent tan δ and dynamic storage modulus are quantitatively modelled based on Group Interaction Modelling (GIM). The "variability" issue in native silks can be conveniently explained by the different degrees of structural disorder as revealed by DMTA. The new insights will facilitate a more comprehensive understanding of the structure-property relations for a wide range of biopolymers

    Multifaceted Regulation of Translational Readthrough by RNA Replication Elements in a Tombusvirus

    Get PDF
    Translational readthrough of stop codons by ribosomes is a recoding event used by a variety of viruses, including plus-strand RNA tombusviruses. Translation of the viral RNA-dependent RNA polymerase (RdRp) in tombusviruses is mediated using this strategy and we have investigated this process using a variety of in vitro and in vivo approaches. Our results indicate that readthrough generating the RdRp requires a novel long-range RNA-RNA interaction, spanning a distance of ∼3.5 kb, which occurs between a large RNA stem-loop located 3'-proximal to the stop codon and an RNA replication structure termed RIV at the 3'-end of the viral genome. Interestingly, this long-distance RNA-RNA interaction is modulated by mutually-exclusive RNA structures in RIV that represent a type of RNA switch. Moreover, a different long-range RNA-RNA interaction that was previously shown to be necessary for viral RNA replicase assembly was also required for efficient readthrough production of the RdRp. Accordingly, multiple replication-associated RNA elements are involved in modulating the readthrough event in tombusviruses and we propose an integrated mechanistic model to describe how this regulatory network could be advantageous by (i) providing a quality control system for culling truncated viral genomes at an early stage in the replication process, (ii) mediating cis-preferential replication of viral genomes, and (iii) coordinating translational readthrough of the RdRp with viral genome replication. Based on comparative sequence analysis and experimental data, basic elements of this regulatory model extend to other members of Tombusviridae, as well as to viruses outside of this family

    Vibration sensitivity found in Caenorhabditis elegans

    No full text
    Mechanical sensing is important for all organisms, but is the least understood of the senses. As mechanical stimuli come in diverse forms, organisms often have sensors or sensory systems that specialise in a form of mechanical stimuli, such as touch or vibration. Here we tested the hypothesis that the nematode worm Caenorhabditis elegans exhibits a behavioural response to vibration that is distinct from its responses to touch. We show that wild type strain worms respond to sustained low frequency vibration in a manner distinct from the known responses to non-localised mechanical stimuli. Furthermore, the behavioural responses of mutant strains suggest different roles for ciliated versus non-ciliated neurons in mediating the response. Although further study is required to identify the vibration sensing pathway, our data support that C. elegans can sense substrate-borne vibrations using cells distinct from those used in gentle touch
    corecore