1,428 research outputs found

    Impulsive gravitational waves of massless particles in extended theories of gravity

    Full text link
    We investigate the vacuum pp-wave and Aichelburg-Sexl-type solutions in f(R) and the modified Gauss-Bonnet theories of gravity with both minimal and nonminimal couplings between matter and geometry. In each case, we obtain the necessary condition for the theory to admit the solution and examine it for several specific models. We show that the wave profiles are the same or proportional to the general relativistic one

    The Impact of Capsid Proteins on Virus Removal and Inactivation During Water Treatment Processes

    Get PDF
    This study examined the effect of the amino acid composition of protein capsids on virus inactivation using ultraviolet (UV) irradiation and titanium dioxide photocatalysis, and physical removal via enhanced coagulation using ferric chloride. Although genomic damage is likely more extensive than protein damage for viruses treated using UV, proteins are still substantially degraded. All amino acids demonstrated significant correlations with UV susceptibility. The hydroxyl radicals produced during photocatalysis are considered nonspecific, but they likely cause greater overall damage to virus capsid proteins relative to the genome. Oxidizing chemicals, including hydroxyl radicals, preferentially degrade amino acids over nucleotides, and the amino acid tyrosine appears to strongly influence virus inactivation. Capsid composition did not correlate strongly to virus removal during physicochemical treatment, nor did virus size. Isoelectric point may play a role in virus removal, but additional factors are likely to contribute

    Temporal nonlinear dynamics of plasmon-solitons, a Duffing oscillator-based approach

    Full text link
    This paper deals with the temporal nonlinear dynamics of plasmon-solitons in a plasmonic waveguide. Duffing equation is recognized as the temporal part of the nonlinear amplitude equation governing the plasmonic waveguide. It is shown that Duffing oscillator waveforms stand for the temporal nonlinear dynamics of plasmon-soliton waves. The exchange of Lorentz-type bright and dark solitons energies gives rise to a Fano resonance. It is thus shown that the interaction of solitons and the formation of plasmon-solitons is inherently nonlinear. It is accordingly indicated that the nonlinear modulation of the plasmon-solitons is achievable via tuning the nonlinearity of the plasmonic waveguide.Comment: 14 pages; 6 figure

    Mesoscale mapping of sediment source hotspots for dam sediment management in data-sparse semi-arid catchments

    Get PDF
    Land degradation and water availability in semi-arid regions are interdependent challenges for management that are influenced by climatic and anthropogenic changes. Erosion and high sediment loads in rivers cause reservoir siltation and decrease storage capacity, which pose risk on water security for citizens, agriculture, and industry. In regions where resources for management are limited, identifying spatial-temporal variability of sediment sources is crucial to decrease siltation. Despite widespread availability of rigorous methods, approaches simplifying spatial and temporal variability of erosion are often inappropriately applied to very data sparse semi-arid regions. In this work, we review existing approaches for mapping erosional hotspots, and provide an example of spatial-temporal mapping approach in two case study regions. The barriers limiting data availability and their effects on erosion mapping methods, their validation, and resulting prioritization of leverage management areas are discussed.BMBF, 02WGR1421A-I, GROW - Verbundprojekt SaWaM: Saisonales Wasserressourcen-Management in Trockenregionen: Praxistransfer regionalisierter globaler Informationen, Teilprojekt 1DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Is entanglement entropy proportional to area?

    Get PDF
    It is known that the entanglement entropy of a scalar field, found by tracing over its degrees of freedom inside a sphere of radius R{\cal R}, is proportional to the area of the sphere (and not its volume). This suggests that the origin of black hole entropy, also proportional to its horizon area, may lie in the entanglement between the degrees of freedom inside and outside the horizon. We examine this proposal carefully by including excited states, to check probable deviations from the area law.Comment: 6 pages. Based on talk by S. Das at Theory Canada 1, Vancouver, 3 June, 2005. To be published in a special edition of the Canadian Journal of Physics. Minor changes to match published versio
    • …
    corecore