182 research outputs found

    Conic optimisation for electric vehicle station smart charging with battery voltage constraints

    Get PDF
    This paper proposes a new convex optimisation strategy for coordinating electric vehicle charging, which accounts for battery voltage rise, and the associated limits on maximum charging power. Optimisation strategies for coordinating electric vehicle charging commonly neglect the increase in battery voltage which occurs as the battery is charged. However, battery voltage rise is an important consideration, since it imposes limits on the maximum charging power. This is particularly relevant for DC fast charging, where the maximum charging power may be severely limited, even at moderate state of charge levels. First, a reduced order battery circuit model is developed, which retains the nonlinear relationship between state of charge and maximum charging power. Using this model, limits on the battery output voltage and battery charging power are formulated as second-order cone constraints. These constraints are integrated with a linearised power flow model for three-phase unbalanced distribution networks. This provides a new multiperiod optimisation strategy for electric vehicle smart charging. The resulting optimisation is a second-order cone program, and thus can be solved in polynomial time by standard solvers. A receding horizon implementation allows the charging schedule to be updated online, without requiring prior information about when vehicles will arrive

    The Value of Reactive Power for Voltage Control in Lossy Networks

    Get PDF
    Reactive power has been proposed as a method of voltage control for distribution networks, providing a means of increasing the amount of energy transferred from distributed generators to the bulk transmission network. The value of reactive power can therefore be measured according to an increase in transferred energy, where the transferred energy is defined as the total generated energy, less the total network losses. If network losses are ignored, an error in the valuation of a given amount of reactive power will be observed (leading to reactive power provision being under- or over-valued). The non-linear analytic solution of a two-bus network is studied, and non-trivial upper and lower bounds are determined for this `valuation error'. The properties predicted by this two-bus network are demonstrated to hold on a three-phase unbalanced distribution test feeder with good accuracy. This allows for an analytic assessment of the importance of losses in the valuation of reactive power in arbitrary networks

    Model Predictive Control for Distributed Microgrid Battery Energy Storage Systems

    Get PDF
    © 2017 IEEE. This brief proposes a new convex model predictive control (MPC) strategy for dynamic optimal power flow between battery energy storage (ES) systems distributed in an ac microgrid. The proposed control strategy uses a new problem formulation, based on a linear d-q reference frame voltage-current model and linearized power flow approximations. This allows the optimal power flows to be solved as a convex optimization problem, for which fast and robust solvers exist. The proposed method does not assume that real and reactive power flows are decoupled, allowing line losses, voltage constraints, and converter current constraints to be addressed. In addition, nonlinear variations in the charge and discharge efficiencies of lithium ion batteries are analyzed and included in the control strategy. Real-time digital simulations were carried out for an islanded microgrid based on the IEEE 13 bus prototypical feeder, with distributed battery ES systems and intermittent photovoltaic generation. It is shown that the proposed control strategy approaches the performance of a strategy based on nonconvex optimization, while reducing the required computation time by a factor of 1000, making it suitable for a real-time MPC implementation

    Residential Load Variability and Diversity at Different Sampling Time and Aggregation Scales

    Get PDF
    The increasing use of large-scale intermittent distributed renewable energy resources on the electrical power system introduces uncertainties in both network planning and management. In addition to architectural changes to the power system, the applications of demand side response (DSR) also add a dimension of complexity - thereby converting the traditionally passive customers into active prosumers (customers that both produce and consume electricity). It has therefore become important to conduct detailed studies on system load profiles to uncover the nature of the system load. These studies could help distribution network operators (DNOs) to adopt relevant strategies that can accommodate new resources such as distributed generation and energy storage on the evolving distribution network and ensure updated design and management approaches. This paper investigates the relationship between both the system load diversity and variability when different customers are aggregated at different scales. Additionally, the implication of sampling time scales is investigated to capture its effect on load diversity and variability. The study looks at the diversity and variability that is observable from the viewpoint of higher power levels, when interconnecting different sized groupings of customers, at different sampling resolutions. The paper thus concludes that the per-customer capacity requirement of the network decreases as the size of customer groupings increases. The load variability also decreases as the aggregation level increases. For active network management, faster time scales are required at lower aggregation scales due to high load variability

    Deep Reinforcement Learning Based Energy Storage Arbitrage With Accurate Lithium-ion Battery Degradation Model

    Get PDF
    Accurate estimation of battery degradation cost is one of the main barriers for battery participating on the energy arbitrage market. This paper addresses this problem by using a model-free deep reinforcement learning (DRL) method to optimize the battery energy arbitrage considering an accurate battery degradation model. Firstly, the control problem is formulated as a Markov Decision Process (MDP). Then a noisy network based deep reinforcement learning approach is proposed to learn an optimized control policy for storage charging/discharging strategy. To address the uncertainty of electricity price, a hybrid Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) model is adopted to predict the price for the next day. Finally, the proposed approach is tested on the the historical UK wholesale electricity market prices. The results compared with model based Mixed Integer Linear Programming (MILP) have demonstrated the effectiveness and performance of the proposed framework

    Decentralised control method for DC microgrids with improved current sharing accuracy

    Get PDF
    © The Institution of Engineering and Technology 2016. A decentralised control method that deals with current sharing issues in dc microgrids (MGs) is proposed in thisstudy. The proposed method is formulated in terms of 'modified global indicator' concept, which was originally proposedto improve reactive power sharing in ac MGs. In this work, the 'modified global indicator' concept is extended tocoordinate dc MGs, which aims to preserve the main features offered by decentralised control methods such as no need ofcommunication links, central controller or knowledge of the microgrid topology and parameters. This global indicator isinserted between current and voltage variables by adopting a virtual capacitor, which directly produces an output currentsharing performance that is less relied on mismatches of the multi-bus network. Meanwhile, a voltage stabiliser iscomplementary developed to maintain output voltage magnitude at steady state through a shunt virtual resistance. Theoperation under multiple dc-buses is also included in order to enhance the applicability of the proposed controller. Adetailed mathematical model including the effect of network mismatches is derived for analysis of the stability of theproposed controller. The feasibility and effectiveness of the proposed control strategy are validated by simulation andexperimental results
    • …
    corecore