1,528 research outputs found

    Mobility deficit – Rehabilitate, an opportunity for functionality

    Get PDF
    There are many pathological conditions that cause mobility deficits and that ultimately influence someone’s autonomy.Aims: to evaluate patients with mobility deficits functional status; to implement a Rehabilitation Nursing intervention plan; to monitor health gains through mobility deficits rehabilitation.Conclusion: Early intervention and the implementation of a nursing rehabilitation intervention plan results in health gains (direct or indirect), decreases the risk of developing Pressure Ulcers (PU) and the risk of developing a situation of immobility that affects patients’ autonomy and quality of life

    Generating MHV super-vertices in light-cone gauge

    Full text link
    We constructe the N=1\mathcal{N}=1 SYM lagrangian in light-cone gauge using chiral superfields instead of the standard vector superfield approach and derive the MHV lagrangian. The canonical transformations of the gauge field and gaugino fields are summarised by the transformation condition of chiral superfields. We show that N=1\mathcal{N}=1 MHV super-vertices can be described by a formula similar to that of the N=4\mathcal{N}=4 MHV super-amplitude. In the discussions we briefly remark on how to derive Nair's formula for N=4\mathcal{N}=4 SYM theory directly from light-cone lagrangian.Comment: 25 pages, 7 figures, JHEP3 style; v2: references added, some typos corrected; Clarification on the condition used to remove one Grassmann variabl

    Phase Structure and Compactness

    Get PDF
    In order to study the influence of compactness on low-energy properties, we compare the phase structures of the compact and non-compact two-dimensional multi-frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and non-compact models coincides, but their low-energy behaviors differ. The critical frequency β2=8π\beta^2 = 8\pi at which the sine-Gordon model undergoes a topological phase transition is found to be unaffected by the compactness of the field since it is determined by high-energy scaling laws. However, the compact two-frequency sine-Gordon model has first and second order phase transitions determined by the low-energy scaling: we show that these are absent in the non-compact model.Comment: 21 pages, 5 figures, minor changes, final version, accepted for publication in JHE

    Reduction in Phencyclidine Induced Sensorimotor Gating Deficits in the Rat Following Increased System Xc − Activity in the Medial Prefrontal Cortex

    Get PDF
    Rationale: Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc −, a cystine–glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis. Objectives: Our goal was to determine whether increased system xc − activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating. Methods: In situ hybridization was used to map messenger RNA (mRNA) expression of xCT, the active subunit of system xc −, in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3–3 mg/kg, sc). N-Acetylcysteine (10–100 μM) and the system xc − inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 μM) were used to increase and decrease system xc − activity, respectively. The uptake of 14C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc − activity. Results: The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of 14C-cystine in prefrontal cortical tissue punches, intraprefrontal cortical infusion of N-acetylcysteine (10–100 μM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-Acetylcysteine was without effect when coinfused with CPG (0.5 μM), indicating an involvement of system xc −. Conclusions: These results indicate that phencyclidine disrupts sensorimotor gating through system xc − independent mechanisms, but that increasing cystine–glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine

    Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks

    Get PDF
    Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia

    Effect of gallium doping on the characteristic properties of polycrystalline cadmium telluride thin film

    Get PDF
    Ga-doped CdTe polycrystalline thin films were successfully electrodeposited on glass/fluorine doped tin oxide (FTO) substrates from aqueous electrolytes containing cadmium nitrate (Cd(NO3)2⸱4H2O) and tellurium oxide (TeO2). The effects of different Ga-doping concentrations on the CdTe:Ga coupled with different post-growth treatments were studied by analysing the structural, optical, morphological and electronic properties of the deposited layers using X-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current conductivity test respectively. XRD results show diminishing (111)C CdTe peak above 20 ppm Ga-doping and appearance of (301)M GaTe diffraction above 50 ppm Ga-doping indicating the formation of two phases; CdTe and GaTe . Although, reductions in the absorption edge slopes were observed above 20 ppm Ga-doping for the as-deposited CdTe:Ga layer, no obvious influence on the energy gap of CdTe films with Ga-doping were detected. Morphologically, reductions in grain size were observed at 50 ppm Ga-doping and above with high pinhole density within the layer. For the as-deposited CdTe:Ga layers, conduction type change from n- to p- were observed at 50 ppm, while the n-type conductivity were retained after post-growth treatment. Highest conductivity was observed at 20 ppm Ga-doping of CdTe. These results are systematically reported in this pape

    Insights into the Binding of Phenyltiocarbamide (PTC) Agonist to Its Target Human TAS2R38 Bitter Receptor

    Get PDF
    Humans' bitter taste perception is mediated by the hTAS2R subfamily of the G protein-coupled membrane receptors (GPCRs). Structural information on these receptors is currently limited. Here we identify residues involved in the binding of phenylthiocarbamide (PTC) and in receptor activation in one of the most widely studied hTAS2Rs (hTAS2R38) by means of structural bioinformatics and molecular docking. The predictions are validated by site-directed mutagenesis experiments that involve specific residues located in the putative binding site and trans-membrane (TM) helices 6 and 7 putatively involved in receptor activation. Based on our measurements, we suggest that (i) residue N103 participates actively in PTC binding, in line with previous computational studies. (ii) W99, M100 and S259 contribute to define the size and shape of the binding cavity. (iii) W99 and M100, along with F255 and V296, play a key role for receptor activation, providing insights on bitter taste receptor activation not emerging from the previously reported computational models

    Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies

    Get PDF
    The dramatic increase in heterogeneous types of biological data—in particular, the abundance of new protein sequences—requires fast and user-friendly methods for organizing this information in a way that enables functional inference. The most widely used strategy to link sequence or structure to function, homology-based function prediction, relies on the fundamental assumption that sequence or structural similarity implies functional similarity. New tools that extend this approach are still urgently needed to associate sequence data with biological information in ways that accommodate the real complexity of the problem, while being accessible to experimental as well as computational biologists. To address this, we have examined the application of sequence similarity networks for visualizing functional trends across protein superfamilies from the context of sequence similarity. Using three large groups of homologous proteins of varying types of structural and functional diversity—GPCRs and kinases from humans, and the crotonase superfamily of enzymes—we show that overlaying networks with orthogonal information is a powerful approach for observing functional themes and revealing outliers. In comparison to other primary methods, networks provide both a good representation of group-wise sequence similarity relationships and a strong visual and quantitative correlation with phylogenetic trees, while enabling analysis and visualization of much larger sets of sequences than trees or multiple sequence alignments can easily accommodate. We also define important limitations and caveats in the application of these networks. As a broadly accessible and effective tool for the exploration of protein superfamilies, sequence similarity networks show great potential for generating testable hypotheses about protein structure-function relationships

    A prospective study of nutrition education and oral nutritional supplementation in patients with Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Weight loss in patients with Alzheimer's disease (AD) is a common clinical manifestation that may have clinical significance.</p> <p>Objectives</p> <p>To evaluate if there is a difference between nutrition education and oral nutritional supplementation on nutritional status in patients with AD.</p> <p>Methods</p> <p>A randomized, prospective 6-month study which enrolled 90 subjects with probable AD aged 65 years or older divided into 3 groups: Control Group (CG) [n = 27], Education Group (EG) [n = 25], which participated in an education program and Supplementation Group (SG) [n = 26], which received two daily servings of oral nutritional supplementation. Subjects were assessed for anthropometric data (weight, height, BMI, TSF, AC and AMC), biochemical data (total protein, albumin, and total lymphocyte count), CDR (Clinical Dementia Rating), MMSE (Mini-mental state examination), as well as dependence during meals.</p> <p>Results</p> <p>The SG showed a significant improvement in the following anthropometric measurements: weight (H calc = 22.12, p =< 0.001), BMI (H calc = 22.12, p =< 0.001), AC (H calc = 12.99, p =< 0.002), and AMC (H calc = 8.67, p =< 0.013) compared to the CG and EG. BMI of the EG was significantly greater compared to the CG. There were significant changes in total protein (H calc = 6.17, p =< 0.046), and total lymphocyte count in the SG compared to the other groups (H cal = 7.94, p = 0.019).</p> <p>Conclusion</p> <p>Oral nutritional supplementation is more effective compared to nutrition education in improving nutritional status.</p
    corecore