5 research outputs found
Retrospective observational study to assess the clinical management and outcomes of hospitalised patients with complicated urinary tract infection in countries with high prevalence of multidrug resistant Gram-negative bacteria (RESCUING)
Introduction: the emergence of multidrug resistant (MDR) Gram-negative bacteria (GNB), including carbapenemase-producing strains, has become a major therapeutic challenge. These MDR isolates are often involved in complicated urinary tract infection (cUTI), and are associated with poor clinical outcomes. The study has been designed to gain insight into the epidemiology, clinical management, outcome and healthcare cost of patients with cUTI, especially in countries with high prevalence of MDR GNB. Methods and analysis: this multinational and multicentre observational, retrospective study will identify cases from 1 January 2013 to 31 December 2014 in order to collect data on patients with cUTI as a cause of hospital admission, and patients who develop cUTI during their hospital stay. The primary end point will be treatment failure defined as the presence of any of the following criteria: (1) signs or symptoms of cUTI present at diagnosis that have not improved by days 5-7 with appropriate antibiotic therapy, (2) new cUTI-related symptoms that have developed within 30 days of diagnosis, (3) urine culture taken within 30 days of diagnosis, either during or after completion of therapy, that grows ≥10(4) colony-forming unit/mL of the original pathogen and (4) death irrespective of cause within 30 days of the cUTI diagnosis. Sample size: 1000 patients afford a power of 0.83 (α=0.05) to detect an absolute difference of 10% in the treatment failure rate between MDR bacteria and other pathogens. This should allow for the introduction of about 20 independent risk factors (or their interaction) in a logistic regression model looking at risk factors for failure. Ethics and dissemination: approval will be sought from all relevant Research Ethics Committees. Publication of this study will be considered as a joint publication by the participating investigator leads, and will follow the recommendations of the International Committee of Medical Journal Editors (ICMJE)
Predictive factors for multidrug-resistant gram-negative bacteria among hospitalised patients with complicated urinary tract infections
Background: Patients with complicated urinary tract infections (cUTIs) frequently receive broad-spectrum antibiotics. We aimed to determine the prevalence and predictive factors of multidrug-resistant gram-negative bacteria in patients with cUTI. Methods: This is a multicenter, retrospective cohort study in south and eastern Europe, Turkey and Israel including consecutive patients with cUTIs hospitalised between January 2013 and December 2014. Multidrug-resistance was defined as non-susceptibility to at least one agent in three or more antimicrobial categories. A mixed-effects logistic regression model was used to determine predictive factors of multidrug-resistant gram-negative bacteria cUTI. Results: From 948 patients and 1074 microbiological isolates, Escherichia coli was the most frequent microorganism (559/1074), showing a 14.5% multidrug-resistance rate. Klebsiella pneumoniae was second (168/1074) and exhibited the highest multidrug-resistance rate (54.2%), followed by Pseudomonas aeruginosa (97/1074) with a 38.1% multidrug-resistance rate. Predictors of multidrug-resistant gram-negative bacteria were male gender (odds ratio [OR], 1.66; 95% confidence interval [CI], 1.20-2.29), acquisition of cUTI in a medical care facility (OR, 2.59; 95%CI, 1.80-3.71), presence of indwelling urinary catheter (OR, 1.44; 95%CI, 0.99-2.10), having had urinary tract infection within the previous year (OR, 1.89; 95%CI, 1.28-2.79) and antibiotic treatment within the previous 30 days (OR, 1.68; 95%CI, 1.13-2.50). Conclusions: The current high rate of multidrug-resistant gram-negative bacteria infections among hospitalised patients with cUTIs in the studied area is alarming. Our predictive model could be useful to avoid inappropriate antibiotic treatment and implement antibiotic stewardship policies that enhance the use of carbapenem-sparing regimens in patients at low risk of multidrug-resistance
Risk factors and prognosis of complicated urinary tract infections caused by Pseudomonas aeruginosa in hospitalized patients: a retrospective multicenter cohort study
Purpose: Complicated urinary tract infections (cUTIs) are among the most frequent health-care-associated infections. In patients with cUTI, Pseudomonas aeruginosa deserves special attention, since it can affect patients with serious underlying conditions. Our aim was to gain insight into the risk factors and prognosis of P. aeruginosa cUTIs in a scenario of increasing multidrug resistance (MDR). Methods: This was a multinational, retrospective, observational study at 20 hospitals in south and southeastern Europe, Turkey, and Israel including consecutive patients with cUTI hospitalized between January 2013 and December 2014. A mixed-effect logistic regression model was performed to assess risk factors for P. aeruginosa and MDR P. aeruginosa cUTI. Results: Of 1,007 episodes of cUTI, 97 (9.6%) were due to P. aeruginosa. Resistance rates of P. aeruginosa were: antipseudomonal cephalosporins 35 of 97 (36.1%), aminoglycosides 30 of 97 (30.9%), piperacillin-tazobactam 21 of 97 (21.6%), fluoroquinolones 43 of 97 (44.3%), and carbapenems 28 of 97 (28.8%). The MDR rate was 28 of 97 (28.8%). Independent risk factors for P. aeruginosa cUTI were male sex (OR 2.61, 95% CI 1.60-4.27), steroid therapy (OR 2.40, 95% CI 1.10-5.27), bedridden functional status (OR 1.79, 95% CI 0.99-3.25), antibiotic treatment within the previous 30 days (OR 2.34, 95% CI 1.38-3.94), indwelling urinary catheter (OR 2.41, 95% CI 1.43-4.08), and procedures that anatomically modified the urinary tract (OR 2.01, 95% CI 1.04-3.87). Independent risk factors for MDR P. aeruginosa cUTI were age (OR 0.96, 95% CI 0.93-0.99) and anatomical urinary tract modification (OR 4.75, 95% CI 1.06-21.26). Readmission was higher in P. aeruginosa cUTI patients than in other etiologies (23 of 97 [23.7%] vs 144 of 910 [15.8%], P=0.04), while 30-day mortality was not significantly different (seven of 97 [7.2%] vs 77 of 910 [8.5%], P=0.6). Conclusion: Patients with P. aeruginosa cUTI had characteristically a serious baseline condition and manipulation of the urinary tract, although their mortality was not higher than that of patients with cUTI caused by other etiologies
Predictive factors for multidrug-resistant gram-negative bacteria among hospitalised patients with complicated urinary tract infections
Background: Patients with complicated urinary tract infections (cUTIs) frequently receive broad-spectrum antibiotics. We aimed to determine the prevalence and predictive factors of multidrug-resistant gram-negative bacteria in patients with cUTI. Methods: This is a multicenter, retrospective cohort study in south and eastern Europe, Turkey and Israel including consecutive patients with cUTIs hospitalised between January 2013 and December 2014. Multidrug-resistance was defined as non-susceptibility to at least one agent in three or more antimicrobial categories. A mixed-effects logistic regression model was used to determine predictive factors of multidrug-resistant gram-negative bacteria cUTI. Results: From 948 patients and 1074 microbiological isolates, Escherichia coli was the most frequent microorganism (559/1074), showing a 14.5% multidrug-resistance rate. Klebsiella pneumoniae was second (168/1074) and exhibited the highest multidrug-resistance rate (54.2%), followed by Pseudomonas aeruginosa (97/1074) with a 38.1% multidrug-resistance rate. Predictors of multidrug-resistant gram-negative bacteria were male gender (odds ratio [OR], 1.66; 95% confidence interval [CI], 1.20-2.29), acquisition of cUTI in a medical care facility (OR, 2.59; 95%CI, 1.80-3.71), presence of indwelling urinary catheter (OR, 1.44; 95%CI, 0.99-2.10), having had urinary tract infection within the previous year (OR, 1.89; 95%CI, 1.28-2.79) and antibiotic treatment within the previous 30 days (OR, 1.68; 95%CI, 1.13-2.50). Conclusions: The current high rate of multidrug-resistant gram-negative bacteria infections among hospitalised patients with cUTIs in the studied area is alarming. Our predictive model could be useful to avoid inappropriate antibiotic treatment and implement antibiotic stewardship policies that enhance the use of carbapenem-sparing regimens in patients at low risk of multidrug-resistance
Predictive factors for multidrug-resistant gram-negative bacteria among hospitalised patients with complicated urinary tract infections
Background: Patients with complicated urinary tract infections (cUTIs) frequently receive broad-spectrum antibiotics. We aimed to determine the prevalence and predictive factors of multidrug-resistant gram-negative bacteria in patients with cUTI. Methods: This is a multicenter, retrospective cohort study in south and eastern Europe, Turkey and Israel including consecutive patients with cUTIs hospitalised between January 2013 and December 2014. Multidrug-resistance was defined as non-susceptibility to at least one agent in three or more antimicrobial categories. A mixed-effects logistic regression model was used to determine predictive factors of multidrug-resistant gram-negative bacteria cUTI. Results: From 948 patients and 1074 microbiological isolates, Escherichia coli was the most frequent microorganism (559/1074), showing a 14.5% multidrug-resistance rate. Klebsiella pneumoniae was second (168/1074) and exhibited the highest multidrug-resistance rate (54.2%), followed by Pseudomonas aeruginosa (97/1074) with a 38.1% multidrug-resistance rate. Predictors of multidrug-resistant gram-negative bacteria were male gender (odds ratio [OR], 1.66; 95% confidence interval [CI], 1.20-2.29), acquisition of cUTI in a medical care facility (OR, 2.59; 95%CI, 1.80-3.71), presence of indwelling urinary catheter (OR, 1.44; 95%CI, 0.99-2.10), having had urinary tract infection within the previous year (OR, 1.89; 95%CI, 1.28-2.79) and antibiotic treatment within the previous 30 days (OR, 1.68; 95%CI, 1.13-2.50). Conclusions: The current high rate of multidrug-resistant gram-negative bacteria infections among hospitalised patients with cUTIs in the studied area is alarming. Our predictive model could be useful to avoid inappropriate antibiotic treatment and implement antibiotic stewardship policies that enhance the use of carbapenem-sparing regimens in patients at low risk of multidrug-resistance