10,674 research outputs found

    Methods for Detection and Correction of Sudden Pixel Sensitivity Drops

    Get PDF
    PDC 8.0 includes implementation of a new algorithm to detect and correct step discontinuities appearing in roughly one of every twenty stellar light curves during a given quarter. An example of such a discontinuity in an actual light curve is shown in fig. 1. The majority of such discontinuities are believed to result from high-energy particles (either cosmic or solar in origin) striking the photometer and causing permanent local changes (typically -0.5% in summed apertures) in quantum efficiency, though a partial exponential recovery is often observed. Since these features, dubbed sudden pixel sensitivity dropouts (SPSDs), are uncorrelated across targets they cannot be properly accounted for by the current detrending algorithm. PDC de-trending is based on the assumption that features in flux time series are due either to intrinsic stellar phenomena or to systematic errors and that systematics will exhibit measurable correlations across targets. SPSD events violate these assumptions and their successful removal not only rectifies the flux values of affected targets, but demonstrably improves the overall performance of PDC de-trending

    Frequency structure of the nonlinear instability of a dragged viscous thread

    Full text link
    A thread of viscous fluid falling onto a moving surface exhibits a spectacular variety of types of motion as the surface speed and nozzle height are varied. For modest nozzle heights, four clear regimes are observed. For large surface speed, the thread is dragged into a stretched centenary configuration which is confined to a plane. As the surface speed is lowered, this exhibits a supercritical bifurcation to a meandering state. At very low surface speeds, the state resembles the usual coiling motion of a viscous thread falling on a stationary surface. In between the meandering and coiling regimes, a window containing a novel multifrequency state, previously called "figures of eight" is found. Using an improved visualization technique and a fully automated apparatus, we made detailed measurements of the longitudinal and transverse motion of the thread in all these states. We found that the multifrequency state is characterized by a complex pattern of motion whose main frequencies are locked in a 3:2 ratio. This state appears and disappears with finite amplitude at sharp bifurcations without measurable hysteresis.Comment: Revised version resubmitted to Phys Rev E. 7 pages, 7 figures. See http://youtu.be/CMYISqxS3K4 for a vide

    A Look at Public Health

    Get PDF
    PDF pages:

    Inspiring Vision and Practice: CultureWork, a leading voice for arts and cultural management praxis

    Get PDF
    3 pagesIn this issue of CultureWork we take a moment to look back and reflect on the publication’s past. As part of this reflection we celebrate the legacy and history of arts management practice upon which we have focused. Over its 15 years of publication, CultureWork has consistently shared relevant, timely work from within the field of arts and cultural management, including emerging research and practical advisories

    Iron mineralogy of a Hawaiian palagonitic soil with Mars-like spectral and magnetic properties

    Get PDF
    Visible and near-IR spectral data for some palagonitic soils from Mauna Kea, Hawaii, are similar to corresponding spectral data for Mars. It is important to understand the composition, distribution, and mineralogy of the ferric-bearing phases for the best spectral analogues because the correspondence in spectral properties implies that the nature of their ferric-bearing phases may be similar to those on Mars. In order to constrain interpretations of the Martian data, a variety of palagonitic soils should be studied in order to establish to what extent differences in their spectral data correspond to differences in the mineralogy of their ferric-bearing phases. Spectral (350-2100 nm), Mossbauer, magnetic, and some compositional data for one of a suite of Hawaiian palagonitic soils are presented. The soil (HWMK1) was collected below the biologically active zone from the sides of a gully cut at 9000 ft elevation on Mauna Kea. The soil was wet sieved with freon into seven size fractions less than 1 mm

    Cosmology and Astrophysics from Relaxed Galaxy Clusters II: Cosmological Constraints

    Full text link
    We present cosmological constraints from measurements of the gas mass fraction, fgasf_{gas}, for massive, dynamically relaxed galaxy clusters. Our data set consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive, as well as high-quality weak gravitational lensing data for a subset of these clusters. Incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, significantly reduces systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in fgasf_{gas}, (7.4±2.3)(7.4\pm2.3)% in a spherical shell at radii 0.8-1.2 r2500r_{2500}, consistent with the expected variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest-redshift data in our sample we obtain a constraint on a combination of the Hubble parameter and cosmic baryon fraction, h3/2Ωb/Ωm=0.089±0.012h^{3/2}\Omega_b/\Omega_m=0.089\pm0.012, that is insensitive to the nature of dark energy. Combined with standard priors on hh and Ωbh2\Omega_b h^2, this provides a tight constraint on the cosmic matter density, Ωm=0.27±0.04\Omega_m=0.27\pm0.04, which is similarly insensitive to dark energy. Using the entire cluster sample, extending to z>1z>1, we obtain consistent results for Ωm\Omega_m and interesting constraints on dark energy: ΩΛ=0.650.22+0.17\Omega_\Lambda=0.65^{+0.17}_{-0.22} for non-flat Λ\LambdaCDM models, and w=0.98±0.26w=-0.98\pm0.26 for flat constant-ww models. Our results are both competitive and consistent with those from recent CMB, SNIa and BAO data. We present constraints on models of evolving dark energy from the combination of fgasf_{gas} data with these external data sets, and comment on the possibilities for improved fgasf_{gas} constraints using current and next-generation X-ray observatories and lensing data. (Abridged)Comment: 25 pages, 14 figures, 8 tables. Accepted by MNRAS. Code and data can be downloaded from http://www.slac.stanford.edu/~amantz/work/fgas14/ . v2: minor fix to table 1, updated bibliograph

    Natural Wormholes as Gravitational Lenses

    Get PDF
    Visser has suggested traversable 3-dimensional wormholes that could plausibly form naturally during Big Bang inflation. A wormhole mouth embedded in high mass density might accrete mass, giving the other mouth a net *negative* mass of unusual gravitational properties. The lensing of such a gravitationally negative anomalous compact halo object (GNACHO) will enhance background stars with a time profile that is observable and qualitatively different from that recently observed for massive compact halo objects (MACHOs) of positive mass. We recommend that MACHO search data be analyzed for GNACHOs.Comment: 4 pages; plus 4 figures; ReV_TeX 3.0; DOE/ER/40537-001/NPL94-07-01

    Translocator protein in late stage Alzheimer\u27s disease and Dementia with Lewy bodies brains

    Get PDF
    OBJECTIVE: Increased translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), in glial cells of the brain has been used as a neuroinflammation marker in the early and middle stages of neurodegenerative diseases, such as Alzheimer\u27s disease (AD) and Dementia with Lewy Bodies (DLB). In this study, we investigated the changes in TSPO density with respect to late stage AD and DLB. METHODS: TSPO density was measured in multiple regions of postmortem human brains in 20 different cases: seven late stage AD cases (Braak amyloid average: C; Braak tangle average: VI; Aged 74-88, mean: 83 ± 5 years), five DLB cases (Braak amyloid average: C; Braak tangle average: V; Aged 79-91, mean: 84 ± 4 years), and eight age-matched normal control cases (3 males, 5 females: aged 77-92 years; mean: 87 ± 6 years). Measurements were taken by quantitative autoradiography using [ RESULTS: No significant changes were found in TSPO density of the frontal cortex, striatum, thalamus, or red nucleus of the AD and DLB brains. A significant reduction in TSPO density was found in the substantia nigra (SN) of the AD and DLB brains compared to that of age-matched healthy controls. INTERPRETATION: This distinct pattern of TSPO density change in late stage AD and DLB cases may imply the occurrence of microglia dystrophy in late stage neurodegeneration. Furthermore, TSPO may not only be a microglia activation marker in early stage AD and DLB, but TSPO may also be used to monitor microglia dysfunction in the late stage of these diseases

    Circumstellar Structure around Evolved Stars in the Cygnus-X Star Formation Region

    Get PDF
    We present observations of newly discovered 24 micron circumstellar structures detected with the Multiband Imaging Photometer for Spitzer (MIPS) around three evolved stars in the Cygnus-X star forming region. One of the objects, BD+43 3710, has a bipolar nebula, possibly due to an outflow or a torus of material. A second, HBHA 4202-22, a Wolf-Rayet candidate, shows a circular shell of 24 micron emission suggestive of either a limb-brightened shell or disk seen face-on. No diffuse emission was detected around either of these two objects in the Spitzer 3.6-8 micron Infrared Array Camera (IRAC) bands. The third object is the luminous blue variable candidate G79.29+0.46. We resolved the previously known inner ring in all four IRAC bands. The 24 micron emission from the inner ring extends ~1.2 arcmin beyond the shorter wavelength emission, well beyond what can be attributed to the difference in resolutions between MIPS and IRAC. Additionally, we have discovered an outer ring of 24 micron emission, possibly due to an earlier episode of mass loss. For the two shell stars, we present the results of radiative transfer models, constraining the stellar and dust shell parameters. The shells are composed of amorphous carbon grains, plus polycyclic aromatic hydrocarbons in the case of G79.29+0.46. Both G79.29+0.46 and HBHA 4202-22 lie behind the main Cygnus-X cloud. Although G79.29+0.46 may simply be on the far side of the cloud, HBHA 4202-22 is unrelated to the Cygnus-X star formation region.Comment: Accepted by A

    Architecture of Kepler's Multi-transiting Systems: II. New investigations with twice as many candidates

    Get PDF
    We report on the orbital architectures of Kepler systems having multiple planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ~96% of the candidate planetary systems are correctly interpreted as true systems. We find that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.0-2.2 degrees, for the packed systems of small planets probed by these observations.Comment: Accepted to Ap
    corecore