1,736 research outputs found
Enhanced hippocampal long-term potentiation and spatial learning in aged 11ß-hydroxysteroid dehydrogenase type 1 knock-out mice
Glucocorticoids are pivotal in the maintenance of memory and cognitive functions as well as other essential physiological processes including energy metabolism, stress responses, and cell proliferation. Normal aging in both rodents and humans is often characterized by elevated glucocorticoid levels that correlate with hippocampus-dependent memory impairments. 11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) amplifies local intracellular ("intracrine") glucocorticoid action; in the brain it is highly expressed in the hippocampus. We investigated whether the impact of 11ß-HSD1 deficiency in knock-out mice (congenic on C57BL/6J strain) on cognitive function with aging reflects direct CNS or indirect effects of altered peripheral insulin-glucose metabolism. Spatial learning and memory was enhanced in 12 month "middle-aged" and 24 month "aged" 11ß-HSD1<sup>–/–</sup> mice compared with age-matched congenic controls. These effects were not caused by alterations in other cognitive (working memory in a spontaneous alternation task) or affective domains (anxiety-related behaviors), to changes in plasma corticosterone or glucose levels, or to altered age-related pathologies in 11ß-HSD1<sup>–/–</sup> mice. Young 11ß-HSD1<sup>–/–</sup> mice showed significantly increased newborn cell proliferation in the dentate gyrus, but this was not maintained into aging. Long-term potentiation was significantly enhanced in subfield CA1 of hippocampal slices from aged 11ß-HSD1<sup>–/–</sup> mice. These data suggest that 11ß-HSD1 deficiency enhances synaptic potentiation in the aged hippocampus and this may underlie the better maintenance of learning and memory with aging, which occurs in the absence of increased neurogenesis
Rural living and health-related quality of life in Australians with Parkinson\u27s disease
Introduction: The motor and non-motor symptoms associated with idiopathic Parkinson’s disease (PD) may compromise the health-related quality of life (HRQOL) of some individuals living with this debilitating condition. Although growing evidence suggests that PD may be more prevalent in rural communities, there is little information about the life quality of these individuals. This study examines whether HRQOL ratings vary in relation to rural and metropolitan life settings. Methods: An analytic cross-sectional study was conducted to compare the HRQOL of two separate samples of people with PD living in metropolitan Melbourne and rural Victoria. The metropolitan sample consisted of 210 individuals who had participated in the baseline assessment for an existing clinical trial. The rural sample comprised 24 participants who attended community-based rehabilitation programs and support groups in rural Victoria. Health-related quality of life was quantified using the Parkinson’s Disease Questionnaire-39 (PDQ-39). Results: The HRQOL of participants in rural Australia differed from individuals living in a large metropolitan city (p=0.025). Participants in rural Australia reported worse overall HRQOL, after controlling for differences in disease duration. Their overall HRQOL was lower than for city dwellers. Rural living was also found to be a significant negative predictor of HRQOL (β=0.14; 95% CI -1.27 to -0.08; p=0.027).Conclusion: The findings of this study suggest that some people with PD living in rural Victoria perceive their HRQOL to be relatively poor. In order to minimise the debilitating consequences of this disease, further studies examining the factors that may contribute to the HRQOL of individuals living in rural and remote areas are required
Effects of negative energy balance on liver gene and protein expression during the early postpartum period and its impacts on dairy cow fertility
End of project reportNegative energy balance (NEB) is a severe metabolic affecting high yielding dairy cows early post partum with both concurrent and latent negative effects on cow fertility as well as on milk production and cow health. The seasonal nature of Irish dairy production necessitates high cow fertility and a compact spring calving pattern in order to maximise grass utilisation. Poor dairy cow reproductive performance currently costs the Irish cattle industry in excess of €400 million annually. High milk yields have been associated with lower reproductive efficiency, and it has been suggested that this effect is probably mediated through its effects on the energy balance of the cow during lactation. The modern high genetic merit dairy cow prioritises nutrient supply towards milk production in early lactation and this demand takes precedence over the provision of optimal conditions for reproduction. In this study we used the bovine Affymetrix 23,000 gene microarray, which contains the most comprehensive set of bovine genes to be assembled and provides a means of investigating the modifying influences of energy balance on liver gene expression.
Cows in severe negative energy balance (SNEB) in early lactation showed altered hepatic gene expression in metabolic processes as well as a down regulation of the insulin-like growth factor (IGF) system, where insulin like growth factor-1 (IGF-1), growth hormone receptor variant 1A (GHR1A) and insulin-like growth factor binding protein-acid labile subunit (IGFBP-ALS) were down regulated compared to the cows in the moderate negative energy balance MNEB group, consistent with a five-fold reduction in systemic concentrations of IGF1 in the SNEB group.Cows in SNEB showed elevated expression of key genes involved in the inflammatory response such as interleukin-8 (IL-8). There was a down regulation of genes involved in cellular growth in SNEB cows and moreover a negative regulator of cellular proliferation (HGFIN) was up regulated in SNEB cows, which is likely to compromise adaptation and recovery from NEB.
The puma method of analysis revealed that 417 genes were differentially regulated by EB (P<0.05), of these genes 190 were up-regulated while 227 were down-regulated, with 405 genes having known biological functions. From Ingenuity Pathway Analysis (IPA), lipid catabolism was found to be the process most affected by differences in EB status
Connecting post-release mortality to the physiological stress response of large coastal sharks in a commercial longline fishery
Bycatch mortality is a major factor contributing to shark population declines. Post-release mortality (PRM) is particularly difficult to quantify, limiting the accuracy of stock assessments. We paired blood-stress physiology with animal-borne accelerometers to quantify PRM rates of sharks caught in a commercial bottom longline fishery. Blood was sampled from the same individuals that were tagged, providing direct correlation between stress physiology and animal fate for sandbar (Carcharhinus plumbeus, N = 130), blacktip (C. limbatus, N = 105), tiger (Galeocerdo cuvier, N = 52), spinner (C. brevipinna, N = 14), and bull sharks (C. leucas, N = 14). PRM rates ranged from 2% and 3% PRM in tiger and sandbar sharks to 42% and 71% PRM in blacktip and spinner sharks, respectively. Decision trees based on blood values predicted mortality with >67% accuracy in blacktip and spinner sharks, and >99% accuracy in sandbar sharks. Ninety percent of PRM occurred within 5 h after release and 59% within 2 h. Blood physiology indicated that PRM was primarily associated with acidosis and increases in plasma potassium levels. Total fishing mortality reached 62% for blacktip and 89% for spinner sharks, which may be under-estimates given that some soak times were shortened to focus on PRM. Our findings suggest that no-take regulations may be beneficial for sandbar, tiger, and bull sharks, but less effective for more susceptible species such as blacktip and spinner sharks
Overlap Distribution of the Three-Dimensional Ising Model
We study the Parisi overlap probability density P_L(q) for the
three-dimensional Ising ferromagnet by means of Monte Carlo (MC) simulations.
At the critical point P_L(q) is peaked around q=0 in contrast with the double
peaked magnetic probability density. We give particular attention to the tails
of the overlap distribution at the critical point, which we control over up to
500 orders of magnitude by using the multi-overlap MC algorithm. Below the
critical temperature interface tension estimates from the overlap probability
density are given and their approach to the infinite volume limit appears to be
smoother than for estimates from the magnetization.Comment: 7 pages, RevTex, 9 Postscript figure
The role of hydrodynamics in structuring in situ ammonium uptake within a submerged macrophyte community
In low-nutrient, macrophyte-dominated coastal zones, benthic ammonium (NH4+) uptake may be influencedby the structural properties of plant canopies via their effect on near-bed hydrodynamics. Using adual-tracer (uranine and 15NH4+) method that does not require enclosures, we examined how this processaffects nutrient uptake rates within a tidally dominated, patchy Caulerpa prolifera–Cymodocea nodosalandscape. NH4+ uptake was determined by calculating tissue 15N excesses and correcting for 15N enrichmentas derived from uranine concentration. Vertical hydrodynamic profiles were measured in thedownstream flow direction from outside to inside of the C. nodosa bed by using an array of acousticDoppler velocimeters. The transition from a C. prolifera to a C. nodosa bed included a change in bothbenthic canopy properties (short and dense to tall and sparse) and sediment topography (0.2-m increasein water column depth) that resulted in an increase in longitudinal advection and turbulent diffusivitywithin the C. nodosa canopy between 0.5 and 1.5mfrom the leading edge. Vertical differences in canopywater exchange appeared to explain variations in uptake between biotic functional groups; however, noclear differences in longitudinal uptake were found. Using in situ labeling, this study demonstrated for thefirst time the role of hydrodynamics in structuring NH4+ uptake within an undisturbed, patchy macrophytelandscape
On the Progenitors of Core-Collapse Supernovae
Theory holds that a star born with an initial mass between about 8 and 140
times the mass of the Sun will end its life through the catastrophic
gravitational collapse of its iron core to a neutron star or black hole. This
core collapse process is thought to usually be accompanied by the ejection of
the star's envelope as a supernova. This established theory is now being tested
observationally, with over three dozen core-collapse supernovae having had the
properties of their progenitor stars directly measured through the examination
of high-resolution images taken prior to the explosion. Here I review what has
been learned from these studies and briefly examine the potential impact on
stellar evolution theory, the existence of "failed supernovae", and our
understanding of the core-collapse explosion mechanism.Comment: 7 Pages, invited review accepted for publication by Astrophysics and
Space Science (special HEDLA 2010 issue
A novel wavelet selection scheme for partial discharge signal detection under low SNR condition
Wavelet-based techniques have been widely used to extract partial discharge (PD) signals from noisy signals. Generally, the procedure consists of 3 steps: wavelet selection, decomposition scale determination, and noise estimation. Wavelet selection is the first and most important step for its successful application in PD denoising. However, despite many variants of techniques deployed, the success rate is not generally good especially when the signal to noise ratio is unity or less. This paper discusses a novel technique that addresses this issue. The technique is inspired by the concept of Shannon entropy and the associated information cost functions (ICF) in information theory. It is adaptive to the detected PD signals. The paper demonstrates that the proposed technique is effective when applied to PD signals obtained through laboratory experiments and on-site measurements. When this technique is applied to cable diagnostics, it should have the potential to extend the range of PD detection from cables
Genome-wide enrichment analysis between endometriosis and obesity-related traits reveals novel susceptibility loci
Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and subfertility, and has been associated with decreased body mass index (BMI). Genetic variants contributing to the heritable component have started to emerge from genome-wide association studies (GWAS), although the majority remain unknown. Unexpectedly, we observed an intergenic locus on 7p15.2 that was genome-wide significantly associated with both endometriosis and fat distribution (waist-to-hip ratio adjusted for BMI; WHRadjBMI) in an independent meta-GWAS of European ancestry individuals. This led us to investigate the potential overlap in genetic variants underlying the aetiology of endometriosis, WHRadjBMI and BMI using GWAS data. Our analyses demonstrated significant enrichment of common variants between fat distribution and endometriosis (P = 3.7 × 10(-3)), which was stronger when we restricted the investigation to more severe (Stage B) cases (P = 4.5 × 10(-4)). However, no genetic enrichment was observed between endometriosis and BMI (P = 0.79). In addition to 7p15.2, we identify four more variants with statistically significant evidence of involvement in both endometriosis and WHRadjBMI (in/near KIFAP3, CAB39L, WNT4, GRB14); two of these, KIFAP3 and CAB39L, are novel associations for both traits. KIFAP3, WNT4 and 7p15.2 are associated with the WNT signalling pathway; formal pathway analysis confirmed a statistically significant (P = 6.41 × 10(-4)) overrepresentation of shared associations in developmental processes/WNT signalling between the two traits. Our results demonstrate an example of potential biological pleiotropy that was hitherto unknown, and represent an opportunity for functional follow-up of loci and further cross-phenotype comparisons to assess how fat distribution and endometriosis pathogenesis research fields can inform each other
- …