6 research outputs found
Ray Tracing Structured AMR Data Using ExaBricks
Structured Adaptive Mesh Refinement (Structured AMR) enables simulations to
adapt the domain resolution to save computation and storage, and has become one
of the dominant data representations used by scientific simulations; however,
efficiently rendering such data remains a challenge. We present an efficient
approach for volume- and iso-surface ray tracing of Structured AMR data on
GPU-equipped workstations, using a combination of two different data
structures. Together, these data structures allow a ray tracing based renderer
to quickly determine which segments along the ray need to be integrated and at
what frequency, while also providing quick access to all data values required
for a smooth sample reconstruction kernel. Our method makes use of the RTX ray
tracing hardware for surface rendering, ray marching, space skipping, and
adaptive sampling; and allows for interactive changes to the transfer function
and implicit iso-surfacing thresholds. We demonstrate that our method achieves
high performance with little memory overhead, enabling interactive high quality
rendering of complex AMR data sets on individual GPU workstations
A Memory Efficient Encoding for Ray Tracing Large Unstructured Data
In theory, efficient and high-quality rendering of unstructured data should greatly benefit from modern GPUs, but in practice, GPUs are often limited by the large amount of memory that large meshes require for element representation and for sample reconstruction acceleration structures. We describe a memory-optimized encoding for large unstructured meshes that efficiently encodes both the unstructured mesh and corresponding sample reconstruction acceleration structure, while still allowing for fast random-access sampling as required for rendering. We demonstrate that for large data our encoding allows for rendering even the 2.9 billion element Mars Lander on a single off-the-shelf GPU-and the largest 6.3 billion version on a pair of such GPUs
Ray Tracing Structured AMR Data Using ExaBricks
Structured Adaptive Mesh Refinement (Structured AMR) enables simulations to adapt the domain resolution to save computation and storage, and has become one of the dominant data representations used by scientific simulations; however, efficiently rendering such data remains a challenge. We present an efficient approach for volume- and iso-surface ray tracing of Structured AMR data on GPU-equipped workstations, using a combination of two different data structures. Together, these data structures allow a ray tracing based renderer to quickly determine which segments along the ray need to be integrated and at what frequency, while also providing quick access to all data values required for a smooth sample reconstruction kernel. Our method makes use of the RTX ray tracing hardware for surface rendering, ray marching, space skipping, and adaptive sampling; and allows for interactive changes to the transfer function and implicit iso-surfacing thresholds. We demonstrate that our method achieves high performance with little memory overhead, enabling interactive high quality rendering of complex AMR data sets on individual GPU workstations