38 research outputs found

    Synthesis and characterisation of a new benzamide-containing nitrobenzoxadiazole as a GSTP1-1 inhibitor endowed with high stability to metabolic hydrolysis

    Get PDF
    The antitumor agent 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (1) is a potent inhibitor of GSTP1-1, a glutathione S-transferase capable of inhibiting apoptosis by binding to JNK1 and TRAF2. We recently demonstrated that, unlike its parent compound, the benzoyl ester of 1 (compound 3) exhibits negligible reactivity towards GSH, and has a different mode of interaction with GSTP1-1. Unfortunately, 3 is susceptible to rapid metabolic hydrolysis. In an effort to improve the metabolic stability of 3, its ester group has been replaced by an amide, leading to N-(6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexyl)benzamide (4). Unlike 3, compound 4 was stable to human liver microsomal carboxylesterases, but retained the ability to disrupt the interaction between GSTP1-1 and TRAF2 regardless of GSH levels. Moreover, 4 exhibited both a higher stability in the presence of GSH and a greater cytotoxicity towards cultured A375 melanoma cells, in comparison with 1 and its analog 2. These findings suggest that 4 deserves further preclinical testing

    Dimethylmyricacene: An In Vitro and In Silico Study of a Semisynthetic Non-Camptothecin Derivative Compound, Targeting Human DNA Topoisomerase 1B

    Get PDF
    Human topoisomerase 1B regulates the topological state of supercoiled DNA enabling all fundamental cell processes. This enzyme, which is the unique molecular target of the natural anticancer compound camptothecin, acts by nicking one DNA strand and forming a transient protein–DNA covalent complex. The interaction of human topoisomerase 1B and dimethylmyricacene, a compound prepared semisynthetically from myricanol extracted from Myrica cerifera root bark, was investigated using enzymatic activity assays and molecular docking procedures. Dimethylmyricacene was shown to inhibit both the cleavage and the religation steps of the enzymatic reaction, and cell viability of A-253, FaDu, MCF-7, HeLa and HCT-116 tumor cell lines

    An Italian foreign policy of religious engagement: challenges and prospects

    Get PDF
    A new awareness of the role of religion in international relations has started to inform concrete policy discussions in several Western Ministries of Foreign Affairs under the heading of ‘religious engagement’ in foreign policy. Italy is no exception, but as the country which hosts the Holy See, it represents a special case. As the approach to religion found in the historical record of Italian foreign policy shows, Italy has a comparative advantage and could well develop a unique model of religious engagement by strengthening the central structures involved in religious matters and foreign policy, as well as by using the vast network of Rome-based religious non-state actors as a forum of consultation and policy advice

    ADP/ATP mitochondrial carrier MD simulations to shed light on the structural–dynamical events that, after an additional mutation, restore the function in a pathological single mutant

    No full text
    Molecular dynamics simulations of the wild type bovine ADP/ATP mitochondrial carrier, and of the single Ala113Pro and double Ala113Pro/Val180Met mutants, embedded in a lipid bilayer, have been carried out for 30 ns to shed light on the structural-dynamical changes induced by the Val180Met mutation restoring the carrier function in the Ala113Pro pathologic mutant. Principal component analysis indicates that, for the three systems, the protein dynamics is mainly characterized by the motion of the matrix loops and of the odd-numbered helices having a conserved proline in their central region. Analysis of the motions shows a different behaviour of single pathological mutant with respect of the other two systems. The single mutation induces a regularization and rigidity of the H3 helix, lost upon the introduction of the second mutation. This is directly correlated to the salt bridge distribution involving residues Arg79, Asp134 and Arg234, hypothesized to interact with the substrate. In fact, in the wild type simulation two stable inter-helices salt bridges, crucial for substrate binding, are present almost over all the simulation time. In line with the impaired ADP transport, one salt interaction is lost in the single mutant trajectory but reappears in the double mutant simulation, where a salt bridge network matching the wild type is restored. Other important structural-dynamical properties, such as the trans-membrane helices mobility, analyzed via the principal component analysis, are similar for the wild type and double mutant while are different for the single mutant, providing a mechanistic explanation for their different functional properties

    Mapping multiple potential ATP binding sites on the matrix side of the bovine ADP/ATP carrier by the combined use of MD simulation and docking

    No full text
    The mitochondrial adenosine diphosphate/adenosine triphosphate (ADP/ATP) carrier-AAC-was crystallized in complex with its specific inhibitor carboxyatractyloside (CATR). The protein consists of a six-transmembrane helix bundle that defines the nucleotide translocation pathway, which is closed towards the matrix side due to sharp kinks in the odd-numbered helices. In this paper, we describe the interaction between the matrix side of the AAC transporter and the ATP(4-) molecule using carrier structures obtained through classical molecular dynamics simulation (MD) and a protein-ligand docking procedure. Fifteen structures were extracted from a previously published MD trajectory through clustering analysis, and 50 docking runs were carried out for each carrier conformation, for a total of 750 runs ("MD docking"). The results were compared to those from 750 docking runs performed on the X-ray structure ("X docking"). The docking procedure indicated the presence of a single interaction site in the X-ray structure that was conserved in the structures extracted from the MD trajectory. MD docking showed the presence of a second binding site that was not found in the X docking. The interaction strategy between the AAC transporter and the ATP(4-) molecule was analyzed by investigating the composition and 3D arrangement of the interaction pockets, together with the orientations of the substrate inside them. A relationship between sequence repeats and the ATP(4-) binding sites in the AAC carrier structure is proposed

    A Brownian computational approach for supporting the design of nanopore-based biosensors

    No full text
    Reliable, point-of-care and reusable sensors are highly needed to drive a revolution in medical diagnosis. In this respect, nanopore-based sensors are emerging as a promising technology for single-molecule sensing. After introducing the basic principles of nanopore sensing devices, we present open challenges related to their development as sensors, focusing on the role of modelling in the design of future biosensing devices. For this, we propose a hierarchical multiscale approach having a Brownian solver at its core. We show that it is able to efficiently calculate the capture statistics, integrating pore and particle features. Finally, we discuss possible improvements to include additional hydrodynamic/electric/chemical effects
    corecore