4,227 research outputs found
Shape transformations in rotating ferrofluid drops
Floating drops of magnetic fluid can be brought into rotation by applying a
rotating magnetic field. We report theoretical and experimental results on the
transition from a spheroid equilibrium shape to non-axissymmetrical three-axes
ellipsoids at certain values of the external field strength. The transitions
are continuous for small values of the magnetic susceptibility and show
hysteresis for larger ones. In the non-axissymmetric shape the rotational
motion of the drop consists of a vortical flow inside the drop combined with a
slow rotation of the shape. Nonlinear magnetization laws are crucial to obtain
quantitative agreement between theory and experiment.Comment: 4 pages, 3 figure
Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer
We have studied temperature dependences of electron transport in graphene and
its bilayer and found extremely low electron-phonon scattering rates that set
the fundamental limit on possible charge carrier mobilities at room
temperature. Our measurements have shown that mobilities significantly higher
than 200,000 cm2/Vs are achievable, if extrinsic disorder is eliminated. A
sharp (threshold-like) increase in resistivity observed above approximately
200K is unexpected but can qualitatively be understood within a model of a
rippled graphene sheet in which scattering occurs on intra-ripple flexural
phonons
Electric Field Effect in Atomically Thin Carbon Films
We report a naturally-occurring two-dimensional material (graphene that can
be viewed as a gigantic flat fullerene molecule, describe its electronic
properties and demonstrate all-metallic field-effect transistor, which uniquely
exhibits ballistic transport at submicron distances even at room temperature
Theoretical model for the superconducting and magnetically ordered borocarbides
We present a theory of superconductivity in presence of a general magnetic
structure in a form suitable for the description of complex magnetic phases
encountered in borocarbides. The theory, complemented with some details of the
band structure and with the magnetic phase diagram, may explain the nearly
reentrant behaviour and the anisotropy of the upper critical field of HoNi2B2C.
The onset of the helical magnetic order depresses superconductivity via the
reduction of the interaction between phonons and electrons caused by the
formation of magnetic Bloch states. At mean field level, no additional
suppression of superconductivity is introduced by the incommensurability of the
helical phase.Comment: 8 pages, 2 figures. Published version, one important reference adde
Automated system for diagnosing craniocerebral injury
A Russian national computing and communication system designed to assist non-specialized physicians in the diagnosis and treatment of craniocerebral injury is described
Axisymmetric equilibria of a gravitating plasma with incompressible flows
It is found that the ideal magnetohydrodynamic equilibrium of an axisymmetric
gravitating magnetically confined plasma with incompressible flows is governed
by a second-order elliptic differential equation for the poloidal magnetic flux
function containing five flux functions coupled with a Poisson equation for the
gravitation potential, and an algebraic relation for the pressure. This set of
equations is amenable to analytic solutions. As an application, the
magnetic-dipole static axisymmetric equilibria with vanishing poloidal plasma
currents derived recently by Krasheninnikov, Catto, and Hazeltine [Phys. Rev.
Lett. {\bf 82}, 2689 (1999)] are extended to plasmas with finite poloidal
currents, subject to gravitating forces from a massive body (a star or black
hole) and inertial forces due to incompressible sheared flows. Explicit
solutions are obtained in two regimes: (a) in the low-energy regime
, where
, , , and are related to the thermal,
poloidal-current, flow and gravitating energies normalized to the
poloidal-magnetic-field energy, respectively, and (b) in the high-energy regime
. It turns out
that in the high-energy regime all four forces, pressure-gradient,
toroidal-magnetic-field, inertial, and gravitating contribute equally to the
formation of magnetic surfaces very extended and localized about the symmetry
plane such that the resulting equilibria resemble the accretion disks in
astrophysics.Comment: 12 pages, latex, to be published in Geophys. Astrophys. Fluid
Dynamic
- …