412 research outputs found
Some notes on the problem of uncertainty in biological measurements
Problems of measurement and instrumentation in biolog
A window in time for the first evolutionary radiation
The window in time between the last globally sterilizing event and the evidence for a complex procaryotic ecosystem is quite narrow, perhaps as small as 200 million years. We will present a heuristic model outlining the first evolutionary radiation that could have led from primordial vesicles to the universal ancestor. The concept of the universal ancestor will be developed in terms of contemporary molecular biology
The thermodynamic dual structure of linear-dissipative driven systems
The spontaneous emergence of dynamical order, such as persistent currents, is
sometimes argued to require principles beyond the entropy maximization of the
second law of thermodynamics. I show that, for linear dissipation in the
Onsager regime, current formation can be driven by exactly the Jaynesian
principle of entropy maximization, suitably formulated for extended systems and
nonequilibrium boundary conditions. The Legendre dual structure of equilibrium
thermodynamics is also preserved, though it requires the admission of
current-valued state variables, and their correct incorporation in the entropy
Proceedings of the 2014 A.S.P.E.N. Research Workshop
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141886/1/jpen0167.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141886/2/jpen0167-sup-0001.pd
Analytical study of non Gaussian fluctuations in a stochastic scheme of autocatalytic reactions
A stochastic model of autocatalytic chemical reactions is studied both
numerically and analytically. The van Kampen perturbative scheme is
implemented, beyond the second order approximation, so to capture the non
Gaussianity traits as displayed by the simulations. The method is targeted to
the characterization of the third moments of the distribution of fluctuations,
originating from a system of four populations in mutual interaction. The theory
predictions agree well with the simulations, pointing to the validity of the
van Kampen expansion beyond the conventional Gaussian solution.Comment: 15 pages, 8 figures, submitted to Phys. Rev.
Unified analysis of terminal-time control in classical and quantum systems
Many phenomena in physics, chemistry, and biology involve seeking an optimal
control to maximize an objective for a classical or quantum system which is
open and interacting with its environment. The complexity of finding an optimal
control for maximizing an objective is strongly affected by the possible
existence of sub-optimal maxima. Within a unified framework under specified
conditions, control objectives for maximizing at a terminal time physical
observables of open classical and quantum systems are shown to be inherently
free of sub-optimal maxima. This attractive feature is of central importance
for enabling the discovery of controls in a seamless fashion in a wide range of
phenomena transcending the quantum and classical regimes.Comment: 10 page
The compositional and evolutionary logic of metabolism
Metabolism displays striking and robust regularities in the forms of
modularity and hierarchy, whose composition may be compactly described. This
renders metabolic architecture comprehensible as a system, and suggests the
order in which layers of that system emerged. Metabolism also serves as the
foundation in other hierarchies, at least up to cellular integration including
bioenergetics and molecular replication, and trophic ecology. The
recapitulation of patterns first seen in metabolism, in these higher levels,
suggests metabolism as a source of causation or constraint on many forms of
organization in the biosphere.
We identify as modules widely reused subsets of chemicals, reactions, or
functions, each with a conserved internal structure. At the small molecule
substrate level, module boundaries are generally associated with the most
complex reaction mechanisms and the most conserved enzymes. Cofactors form a
structurally and functionally distinctive control layer over the small-molecule
substrate. Complex cofactors are often used at module boundaries of the
substrate level, while simpler ones participate in widely used reactions.
Cofactor functions thus act as "keys" that incorporate classes of organic
reactions within biochemistry.
The same modules that organize the compositional diversity of metabolism are
argued to have governed long-term evolution. Early evolution of core
metabolism, especially carbon-fixation, appears to have required few
innovations among a small number of conserved modules, to produce adaptations
to simple biogeochemical changes of environment. We demonstrate these features
of metabolism at several levels of hierarchy, beginning with the small-molecule
substrate and network architecture, continuing with cofactors and key conserved
reactions, and culminating in the aggregation of multiple diverse physical and
biochemical processes in cells.Comment: 56 pages, 28 figure
The origin of large molecules in primordial autocatalytic reaction networks
Large molecules such as proteins and nucleic acids are crucial for life, yet
their primordial origin remains a major puzzle. The production of large
molecules, as we know it today, requires good catalysts, and the only good
catalysts we know that can accomplish this task consist of large molecules.
Thus the origin of large molecules is a chicken and egg problem in chemistry.
Here we present a mechanism, based on autocatalytic sets (ACSs), that is a
possible solution to this problem. We discuss a mathematical model describing
the population dynamics of molecules in a stylized but prebiotically plausible
chemistry. Large molecules can be produced in this chemistry by the coalescing
of smaller ones, with the smallest molecules, the `food set', being buffered.
Some of the reactions can be catalyzed by molecules within the chemistry with
varying catalytic strengths. Normally the concentrations of large molecules in
such a scenario are very small, diminishing exponentially with their size.
ACSs, if present in the catalytic network, can focus the resources of the
system into a sparse set of molecules. ACSs can produce a bistability in the
population dynamics and, in particular, steady states wherein the ACS molecules
dominate the population. However to reach these steady states from initial
conditions that contain only the food set typically requires very large
catalytic strengths, growing exponentially with the size of the catalyst
molecule. We present a solution to this problem by studying `nested ACSs', a
structure in which a small ACS is connected to a larger one and reinforces it.
We show that when the network contains a cascade of nested ACSs with the
catalytic strengths of molecules increasing gradually with their size (e.g., as
a power law), a sparse subset of molecules including some very large molecules
can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio
- …