2 research outputs found

    Warming and temperature variability determine the performance of two invertebrate predators

    Get PDF
    in a warming ocean, temperature variability imposes intensified peak stress, but offers periods of stress release. While field observations on organismic responses to heatwaves are emerging, experimental evidence is rare and almost lacking for shorter-scale environmental variability. For two major invertebrate predators, we simulated sinusoidal temperature variability (±3 °C) around todays’ warm summer temperatures and around a future warming scenario (+4 °C) over two months, based on high-resolution 15-year temperature data that allowed implementation of realistic seasonal temperature shifts peaking midpoint. Warming decreased sea stars’ (Asterias rubens) energy uptake (Mytilus edulis consumption) and overall growth. Variability around the warming scenario imposed additional stress onto Asterias leading to an earlier collapse in feeding under sinusoidal fluctuations. High-peak temperatures prevented feeding, which was not compensated during phases of stress release (low-temperature peaks). In contrast, increased temperatures increased feeding on Mytilus but not growth rates of the recent invader Hemigrapsus takanoi, irrespective of the scale at which temperature variability was imposed. This study highlights species-specific impacts of warming and identifies temperature variability at the scale of days to weeks/months as important driver of thermal responses. When species’ thermal limits are exceeded, temperature variability represents an additional source of stress as seen from future warming scenarios

    Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels

    Get PDF
    The shore crab Hemigrapsus takanoi Asakura and Watanabe, 2005, native to the Northwest Pacific, was recorded in European waters about 25 years ago and it was first found in the Baltic Sea in 2014. Information on population structure of invaders and their new niche is needed in order to understand their biological impact. Over one year, we assessed temporal changes in relative abundance, size-class and sex ratio, as well as breeding season of H. takanoi in the Kiel Fjord (Western Baltic Sea). In addition, prey size preference and consumption rates on mussels (Mytilus edulis Linnaeus, 1758) were experimentally assessed in spring, summer and autumn. A total of 596 individuals were collected with highest and lowest abundances in June and February, respectively. Females were dominant over males (sex ratio 1.4:1), but males grew to larger sizes. H. takanoi reproduced between June and August with ovigerous females representing 30% of the entire female abundance registered over the entire year. Males were able to open larger mussels (due to larger claws) and consumed twice as many mussels when compared to females of similar size. Consumption rates for males were 6 and 2 times higher in summer (seawater temperature of 19 °C) compared to spring (8 °C) and autumn (13 °C), respectively. Females consumed 3 times more mussels in autumn than in spring. H. takanoi is an active predator, capable of reproduction in stressful brackish water conditions. Due to large abundances and high feeding pressure, this recently introduced species could play a key role in structuring post-settlement population dynamics of the dominant habitat builder M. edulis
    corecore