12 research outputs found
Human rhinovirus spatial-temporal epidemiology in rural coastal Kenya, 2015-2016, observed through outpatient surveillance
Background
Human rhinovirus (HRV) is the predominant cause of upper respiratory tract infections, resulting in a significant public health burden. The virus circulates as many different types (~160), each generating strong homologous, but weak heterotypic, immunity. The influence of these features on transmission patterns of HRV in the community is understudied.
Methods
Nasopharyngeal swabs were collected from patients with symptoms of acute respiratory infection (ARI) at nine out-patient facilities across a Health and Demographic Surveillance System between December 2015 and November 2016. HRV was diagnosed by real-time RT-PCR, and the VP4/VP2 genomic region of the positive samples sequenced. Phylogenetic analysis was used to determine the HRV types. Classification models and G-test statistic were used to investigate HRV type spatial distribution. Demographic characteristics and clinical features of ARI were also compared.
Results
Of 5,744 NPS samples collected, HRV was detected in 1057 (18.4%), of which 817 (77.3%) were successfully sequenced. HRV species A, B and C were identified in 360 (44.1%), 67 (8.2%) and 390 (47.7%) samples, respectively. In total, 87 types were determined: 39, 10 and 38 occurred within species A, B and C, respectively. HRV types presented heterogeneous temporal patterns of persistence. Spatially, identical types occurred over a wide distance at similar times, but there was statistically significant evidence for clustering of types between health facilities in close proximity or linked by major road networks.
Conclusion
This study records a high prevalence of HRV in out-patient presentations exhibiting high type diversity. Patterns of occurrence suggest frequent and independent community invasion of different types. Temporal differences of persistence between types may reflect variation in type-specific population immunity. Spatial patterns suggest either rapid spread or multiple invasions of the same type, but evidence of similar types amongst close health facilities, or along road systems, indicate type partitioning structured by local spread
Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018
Background: Virus genome sequencing is increasingly utilized in epidemiological surveillance. Genomic data allows comprehensive evaluation of underlying viral diversity and epidemiology to inform control. For human rhinovirus (HRV), genomic amplification and sequencing is challenging due to numerous types, high genetic diversity and inadequate reference sequences.
Methods: We developed a tiled amplicon type-specific protocol for genome amplification and sequencing on the Illumina MiSeq platform of two HRV types, A15 and A101. We then assessed added value in analyzing whole genomes relative to the VP4/2 region only in the investigation of HRV molecular epidemiology within the community in Kilifi, coastal Kenya.
Results: We processed 73 samples collected between 2016-2018, and 48 yielded at least 70% HRV genome coverage. These included all A101 samples (n=10) and 38 (60.3%) A15 samples. Phylogenetic analysis revealed that the Kilifi A101 sequences interspersed with global A101 genomes available in GenBank collected between 1999-2016. On the other hand, our A15 sequences formed a monophyletic group separate from the global genomes collected in 2008 and 2019. Improved phylogenetic resolution was observed with the genome phylogenies compared to the VP4/2 phylogenies.
Conclusions: We present a type-specific full genome sequencing approach for obtaining HRV genomic data and characterizing infections.
Keyword
Spatio-temporal distribution of rhinovirus types in Kenya: a retrospective analysis, 2014
The epidemiology and circulation patterns of various rhinovirus types within populations remains under-explored. We generated 803 VP4/VP2 gene sequences from rhinovirus-positive samples collected from acute respiratory illness (ARI) patients, including both in-patient and outpatient cases, between 1st January and 31st December 2014 from eleven surveillance sites across Kenya and used phylogenetics to characterise virus introductions and spread. RVs were detected throughout the year, with the highest detection rates observed from January to March and June to July. We detected a total of 114 of the 169 currently classified types. Our analysis revealed numerous virus introductions into Kenya characterized by local expansion and extinction, and extensive spatial mixing of types within the country due to the widespread transmission of the virus after an introduction. This work demonstrates that in a single year, the circulation of rhinovirus in Kenya was characterized by substantial genetic diversity, multiple introductions, and extensive geographical spread
Human rhinovirus spatial-temporal epidemiology in rural coastal Kenya, 2015-2016, observed through outpatient surveillance [version 1; referees: 2 approved]
Background: Human rhinovirus (HRV) is the predominant cause of upper respiratory tract infections, resulting in a significant public health burden. The virus circulates as many different types (~160), each generating strong homologous, but weak heterotypic, immunity. The influence of these features on transmission patterns of HRV in the community is understudied. Methods: Nasopharyngeal swabs were collected from patients with symptoms of acute respiratory infection (ARI) at nine out-patient facilities across a Health and Demographic Surveillance System between December 2015 and November 2016. HRV was diagnosed by real-time RT-PCR, and the VP4/VP2 genomic region of the positive samples sequenced. Phylogenetic analysis was used to determine the HRV types. Classification models and G-test statistic were used to investigate HRV type spatial distribution. Demographic characteristics and clinical features of ARI were also compared. Results: Of 5,744 NPS samples collected, HRV was detected in 1057 (18.4%), of which 817 (77.3%) were successfully sequenced. HRV species A, B and C were identified in 360 (44.1%), 67 (8.2%) and 390 (47.7%) samples, respectively. In total, 87 types were determined: 39, 10 and 38 occurred within species A, B and C, respectively. HRV types presented heterogeneous temporal patterns of persistence. Spatially, identical types occurred over a wide distance at similar times, but there was statistically significant evidence for clustering of types between health facilities in close proximity or linked by major road networks. Conclusion: This study records a high prevalence of HRV in out-patient presentations exhibiting high type diversity. Patterns of occurrence suggest frequent and independent community invasion of different types. Temporal differences of persistence between types may reflect variation in type-specific population immunity. Spatial patterns suggest either rapid spread or multiple invasions of the same type, but evidence of similar types amongst close health facilities, or along road systems, indicate type partitioning structured by local spread
Trends and intensity of Rhinovirus invasions in Kilifi, coastal Kenya, over a 12-year period, 2007–2018
Background:
Rhinoviruses (RVs) are ubiquitous pathogens and the principal etiological agents of common cold. Despite the high frequency of RV infections, data describing their long-term epidemiological patterns in a defined population remain limited.
Methods:
Here, we analysed 1,070 VP4/VP2 genomic region sequences sampled at Kilifi County Hospital on the Kenya Coast. The samples were collected between 2007 and 2018 from hospitalised paediatric patients (< 60 months) with acute respiratory illness.
Results:
Of 7,231 children enrolled, RV was detected in 1,497 (20.7%) and VP4/VP2 sequences were recovered from 1,070 samples (71.5%). A total of 144 different RV types were identified (67 Rhinovirus A, 18 Rhinovirus B and 59 Rhinovirus C) and at any month, several types co-circulated with alternating predominance. Within types multiple genetically divergent variants were observed. Ongoing RV infections through time appeared to be a combination of (i) persistent types (observed up to seven consecutive months), (ii) reintroduced genetically distinct variants and (iii) new invasions (average of eight new types, annually).
Conclusion:
Sustained RV presence in the Kilifi community is mainly due to frequent invasion by new types and variants rather than continuous transmission of locally established types/variants
A new Omicron lineage with Spike Y451H mutation that dominated a new COVID-19 wave in Kilifi, Coastal Kenya : March-May 2023
Objective
Assessment of the efficacy and safety/tolerability of the aromatase inhibitor leflutrozole to normalise testosterone in Obesity-associated Hypogonadotropic Hypogonadism (OHH).
Design
Placebo-controlled, double-blind, RCT, in 70 sites in Europe/USA.
Methods
Patient inclusion criteria: men with BMI of 30-50 kg/m2, morning total testosterone (TT) < 10.41 nmol/L, and two androgen deficiency symptoms (at least one of sexual dysfunction). Patients randomised to weekly leflutrozole (0.1/0.3/1.0 mg) or placebo for 24 weeks. Primary endpoint: normalisation of TT levels in ≥75% of patients after 24 weeks. Secondary endpoints (included): time to TT normalisation and change in LH/FSH. Safety was assessed through adverse events and laboratory monitoring.
Results and Conclusions
Of 2103 screened, 271 were randomised, 81 discontinued. Demographic characteristics were similar across groups. Mean BMI was 38.1 kg/m2 and TT 7.97 nmol/L. The primary endpoint was achieved in all leflutrozole-treated groups by 24 weeks with a dose-tiered response; mean TT 15.89; 17.78; 20.35 nmol/L, for leflutrozole 0.1 mg, 0.3 mg, and 1.0 mg groups respectively, vs 8.04 nmol/L for placebo. LH/FSH significantly increased in leflutrozole vs placebo groups. No improvements in body composition or sexual dysfunction were observed. Semen volume/total motile sperm count improved with leflutrozole vs placebo. Treatment-emergent adverse events, more common in leflutrozole-treated groups included, raised haematocrit, hypertension, increased PSA, and headache. Some reduction in lumbar bone density was observed with leflutrozole (mean −1.24%, −1.30%, −2.09%) and 0.66% for 0.1 mg, 0.3 mg, 1.0 mg, and placebo, respectively, without change at the hip. This RCT of leflutrozole in OHH demonstrated normalisation of TT in obese men. FSH/LH and semen parameter changes support that leflutrozole may preserve/improve testicular function
Rhinovirus dynamics across different social structures
Rhinoviruses (RV), common human respiratory viruses, exhibit significant antigenic diversity, yet their dynamics across distinct social structures remain poorly understood. Our study delves into RV dynamics within Kenya by analysing VP4/2 sequences across four different social structures: households, a public primary school, outpatient clinics in the Kilifi Health and Demographics Surveillance System (HDSS), and countrywide hospital admissions and outpatients. The study revealed the greatest diversity of RV infections at the countrywide level (114 types), followed by the Kilifi HDSS (78 types), the school (47 types), and households (40 types), cumulatively representing >90% of all known RV types. Notably, RV diversity correlated directly with the size of the population under observation, and several RV type variants occasionally fuelled RV infection waves. Our findings highlight the critical role of social structures in shaping RV dynamics, information that can be leveraged to enhance public health strategies. Future research should incorporate whole-genome analysis to understand fine-scale evolution across various social structures
Genomic Epidemiology of SARS-CoV-2 in Seychelles, 2020–2021
Seychelles, an archipelago of 155 islands in the Indian Ocean, had confirmed 24,788 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the 31st of December 2021. The first SARS-CoV-2 cases in Seychelles were reported on the 14th of March 2020, but cases remained low until January 2021, when a surge was observed. Here, we investigated the potential drivers of the surge by genomic analysis of 1056 SARS-CoV-2 positive samples collected in Seychelles between 14 March 2020 and 31 December 2021. The Seychelles genomes were classified into 32 Pango lineages, 1042 of which fell within four variants of concern, i.e., Alpha, Beta, Delta and Omicron. Sporadic cases of SARS-CoV-2 detected in Seychelles in 2020 were mainly of lineage B.1 (lineage predominantly observed in Europe) but this lineage was rapidly replaced by Beta variant starting January 2021, and which was also subsequently replaced by the Delta variant in May 2021 that dominated till November 2021 when Omicron cases were identified. Using the ancestral state reconstruction approach, we estimated that at least 78 independent SARS-CoV-2 introduction events occurred in Seychelles during the study period. The majority of viral introductions into Seychelles occurred in 2021, despite substantial COVID-19 restrictions in place during this period. We conclude that the surge of SARS-CoV-2 cases in Seychelles in January 2021 was primarily due to the introduction of more transmissible SARS-CoV-2 variants into the islands
Data for Human rhinovirus spatial-temporal epidemiology in rural coastal Kenya, 2015-2016, observed through outpatient surveillance
Background
Human rhinovirus (HRV) is the predominant cause of upper respiratory tract infections, resulting in a significant public health burden. The virus circulates as many different types (~160), each generating strong homologous, but weak heterotypic, immunity. The influence of these features on transmission patterns of HRV in the community is understudied.
Methods
Nasopharyngeal swabs were collected from patients with symptoms of acute respiratory infection (ARI) at nine out-patient facilities across a Health and Demographic Surveillance System between December 2015 and November 2016. HRV was diagnosed by real-time RT-PCR, and the VP4/VP2 genomic region of the positive samples sequenced. Phylogenetic analysis was used to determine the HRV types. Classification models and G-test statistic were used to investigate HRV type spatial distribution. Demographic characteristics and clinical features of ARI were also compared.
Results
Of 5,744 NPS samples collected, HRV was detected in 1057 (18.4%), of which 817 (77.3%) were successfully sequenced. HRV species A, B and C were identified in 360 (44.1%), 67 (8.2%) and 390 (47.7%) samples, respectively. In total, 87 types were determined: 39, 10 and 38 occurred within species A, B and C, respectively. HRV types presented heterogeneous temporal patterns of persistence. Spatially, identical types occurred over a wide distance at similar times, but there was statistically significant evidence for clustering of types between health facilities in close proximity or linked by major road networks.
Conclusion
This study records a high prevalence of HRV in out-patient presentations exhibiting high type diversity. Patterns of occurrence suggest frequent and independent community invasion of different types. Temporal differences of persistence between types may reflect variation in type-specific population immunity. Spatial patterns suggest either rapid spread or multiple invasions of the same type, but evidence of similar types amongst close health facilities, or along road systems, indicate type partitioning structured by local spread
New SARS-CoV-2 Omicron variant with spike protein mutation Y451H, Kilifi, Kenya, March–May 2023
Objective
Assessment of the efficacy and safety/tolerability of the aromatase inhibitor leflutrozole to normalise testosterone in Obesity-associated Hypogonadotropic Hypogonadism (OHH).
Design
Placebo-controlled, double-blind, RCT, in 70 sites in Europe/USA.
Methods
Patient inclusion criteria: men with BMI of 30-50 kg/m2, morning total testosterone (TT) < 10.41 nmol/L, and two androgen deficiency symptoms (at least one of sexual dysfunction). Patients randomised to weekly leflutrozole (0.1/0.3/1.0 mg) or placebo for 24 weeks. Primary endpoint: normalisation of TT levels in ≥75% of patients after 24 weeks. Secondary endpoints (included): time to TT normalisation and change in LH/FSH. Safety was assessed through adverse events and laboratory monitoring.
Results and Conclusions
Of 2103 screened, 271 were randomised, 81 discontinued. Demographic characteristics were similar across groups. Mean BMI was 38.1 kg/m2 and TT 7.97 nmol/L. The primary endpoint was achieved in all leflutrozole-treated groups by 24 weeks with a dose-tiered response; mean TT 15.89; 17.78; 20.35 nmol/L, for leflutrozole 0.1 mg, 0.3 mg, and 1.0 mg groups respectively, vs 8.04 nmol/L for placebo. LH/FSH significantly increased in leflutrozole vs placebo groups. No improvements in body composition or sexual dysfunction were observed. Semen volume/total motile sperm count improved with leflutrozole vs placebo. Treatment-emergent adverse events, more common in leflutrozole-treated groups included, raised haematocrit, hypertension, increased PSA, and headache. Some reduction in lumbar bone density was observed with leflutrozole (mean −1.24%, −1.30%, −2.09%) and 0.66% for 0.1 mg, 0.3 mg, 1.0 mg, and placebo, respectively, without change at the hip. This RCT of leflutrozole in OHH demonstrated normalisation of TT in obese men. FSH/LH and semen parameter changes support that leflutrozole may preserve/improve testicular function