144 research outputs found

    Cathodoluminescence measurement of an orientation dependent aluminum concentration in AlxGa1−xAs epilayers grown by molecular beam epitaxy on a nonplanar substrate

    Get PDF
    Cathodoluminescence scanning electron microscopy is used to study AlxGa1−x As epilayers grown on a nonplanar substrate by molecular beam epitaxy. Grooves parallel to the [011-bar] direction were etched in an undoped GaAs substrate. Growth on such grooves proceeds on particular facet planes. We find that the aluminum concentration in the epilayers is dependent on the facet orientation, changing by as much as 35% from the value in the unpatterned areas. The transition in the aluminum concentration at a boundary between two facets is observed to be very abrupt

    Weak antilocalization and zero-field electron spin splitting in AlGaN/AlN/GaN heterostructures with a polarization induced two-dimensional electron gas

    Get PDF
    Spin-orbit coupling is studied using the quantum interference corrections to conductance in AlGaN/AlN/GaN two-dimensional electron systems where the carrier density is controlled by the persistent photoconductivity effect. All the samples studied exhibit a weak antilocalization feature with a spin-orbit field of around 1.8 mT. The zero-field electron spin splitting energies extracted from the weak antilocalization measurements are found to scale linearly with the Fermi wavevector with an effective linear spin-orbit coupling parameter 5.5x10^{-13} eV m. The spin-orbit times extracted from our measurements varied from 0.74 to 8.24 ps within the carrier density range of this experiment.Comment: 16 pages, 4 figure

    High-field electron transport in doped ZnO

    Get PDF
    Current-voltage characteristics have been measured for ZnO:Ga and Zn:Sb epitaxial layers with electron densities ranging from 1.4x10(17) cm(-3) to 1.1 x 10(20) cm(-3). Two-terminal samples with coplanar electrodes demonstrate virtually ohmic behavior until thermal effects come into play. Soft damage of the samples takes place at high currents. The threshold power (per electron) for the damage is nearly inversely proportional to the electron density over a wide range of electron densities. Pulsed voltage is applied in order to minimize the thermal effects, and thus an average electric field of 150 kV cm(-1) is reached in some samples subjected to 2 ns voltage pulses. The results are treated in terms of electron drift velocity estimated from the data on current and electron density under the assumption of uniform electric field. The highest velocity of similar to 1.5 x 10(7) cm s(-1) is found at an electric field of similar to 100 kV cm(-1) for the sample with an electron density of 1.4 x 10(17) cm(-3). The nonohmic behavior due to hot-electron effects is weak, and the dependence of the electron drift velocity on the doping resembles the variation of mobility

    Ultrafast decay of hot phonons in an AlGaN/AlN/AlGaN/GaN camelback channel

    Get PDF
    A bottleneck for heat dissipation from the channel of a GaN-based heterostructure field-effect transistor is treated in terms of the lifetime of nonequilibrium (hot) longitudinal optical phonons, which are responsible for additional scattering of electrons in the voltage-biased quasi-two-dimensional channel. The hot-phonon lifetime is measured for an Al0.33Ga0.67N/AlN/Al0.1Ga0.9N/GaN heterostructure where the mobile electrons are spread in a composite Al0.1Ga0.9N/GaN channel and form a camelback electron density profile at high electric fields. In accordance with plasmon-assisted hot-phonon decay, the parameter of importance for the lifetime is not the total charge in the channel (the electron sheet density) but rather the electron density profile. This is demonstrated by comparing two structures with equal sheet densities (1 × 1013 cm−2), but with different density profiles. The camelback channel profile exhibits a shorter hot-phonon lifetime of ∼270 fs as compared with ∼500 fs reported for a standard Al0.33Ga0.67N/AlN/GaN channel at low supplied power levels. When supplied power is sufficient to heat the electrons \u3e 600 K, ultrafast decay of hot phonons is observed in the case of the composite channel structure. In this case, the electron density profile spreads to form a camelback profile, and hot-phonon lifetime reduces to ∼50 fs

    Camelback channel for fast decay of LO phonons in GaN heterostructure field-effect transistor at high electron density

    Get PDF
    Fluctuation technique is used to measure hot-phonon lifetime in dual channel GaN-based configuration proposed to support high-power operation at high frequencies. The channel is formed of a composite Al0.1Ga0.9N/GaN structure situated in an Al0.82In0.18N/AlN/Al0.1Ga0.9N/GaN heterostructure. According to capacitance–voltage measurements and simultaneous treatment of Schrödinger–Poisson equations, the mobile electrons in this dual channel configuration form a camelback density profile at elevated hot-electron temperatures. The hot-phonon lifetime was found to depend on the shape of the electron profile rather than solely on its sheet density. The camelback channel with an electron sheet density of 1.8 × 1013 cm−2 demonstrates ultrafast decay of hot phonons at hot-electron temperatures above 600 K: the hot-phonon lifetime is below ∼60 fs in contrast to ∼600 fs at an electron sheet density of 1.2 × 1013 cm−2 obtained in a reference Al0.82In0.18N/AlN/GaN structure at 600 K. The results suggest a suitable method to increase the electron sheet density without the deleterious effect caused by inefficient hot-phonon decay observed in a standard design at similar electron densities

    Deep level defects in n-type GaN grown by molecular beam epitaxy

    Get PDF
    Deep-level transient spectroscopy has been used to characterize electronic defects in n-type GaN grown by reactive molecular-beam epitaxy. Five deep-level electronic defects were observed, with activation energiesE1=0.234±0.006, E2=0.578±0.006, E3=0.657±0.031, E4=0.961±0.026, and E5=0.240±0.012 eV. Among these, the levels labeled E1, E2, and E3are interpreted as corresponding to deep levels previously reported in n-GaN grown by both hydride vapor-phase epitaxy and metal organic chemical vapor deposition. Levels E4 and E5do not correspond to any previously reported defect levels, and are characterized for the first time in our studies

    Effect of Ammonia Flow Rate on Impurity incorporation and Material Properties of Si-Doped GaN Epitaxial Films Grown by Reactive Molecular Beam Epitaxy

    Get PDF
    Effect of ammonia flow rate on the impurity incorporation and material properties of Si-doped GaN films grown by reactive molecular beam epitaxy (RMBE) process is discussed. It appears that the ammonia flow rate has a marginal effect on the incorporation of impurities into the Si-doped GaN films except there was a little decrease in O and Si with increasing ammonia flow rate when the Si concentration in the film is higher than 1018 cm−3. Electron Hall mobility of Si-doped GaN films grown by RMBE varies with ammonia flow rate used during film growth. From deep level transient spectroscopy (DLTS) measurements for Schottky diodes grown with different ammonia flow rates, one deep trap (C1) particular to the RMBE films was found. The concentration of C1 trap was found to be the lowest in the sample grown with the condition leading to the highest electron Hall mobility within the scope of this experiment. In addition to the DLTS result, other characterization techniques used (x-ray diffraction, cross-sectional transmission electron microscopy, and low-temperature photoluminescence) also consistently show that the RMBE process requires certain value of ammonia flow rate (or V/III ratio if the Ga flux is fixed) to produce Si-doped GaN films with high quality

    Electrically and magnetically tunable phase shifters based on a barium strontium titanate-yttrium iron garnet layered structure

    Get PDF
    We report on the tuning of permittivity and permeability of a ferroelectric/ferromagnetic bilayer structure which can be used as a microwavephase shifter with two degrees of tuning freedom. The structure was prepared by the growth of a yttrium iron garnet (YIG) layer on a gadolinium gallium garnet substrate by liquid phase epitaxy, the growth of a barium strontium titanate (BST) layer on the YIG layer through pulsed laser deposition, and then the fabrication of a coplanar waveguide on the top of BST through e-beam evaporation and trilayer liftoff techniques. The phase shifters exhibit a differential phase shift of 38°/cm at 6 GHz through permittivity tuning under an applied electric field of ∼75 kV/cm and a static magnetic field of 1700 Oe. By tuning the permeability through the applied magnetic field we increase the differential phase shift to 52°/cm and simultaneously obtain a better match to the zero applied electric field condition, resulting in an improvement in the return loss from 22.4 to 24.9 dB. Additionally, we demonstrate the use of a lead magnesium niobate-lead titanate (PMN-PT) layer to tune the permeability of the YIG layer. This tuning relies on the piezoelectric and magnetostrictive effects of PMN-PT and YIG, respectively. Tuning of the ferromagnetic response through strain and magnetostriction as opposed to applied magnetic field can potentially pave the way for low power consumption, continuously and rapidly tunable, impedance matched phase shifters

    Bias-assisted photoelectrochemical etching of p-GaN at 300 K

    Get PDF
    Photoelectrochemical (PEC)etching of p-type GaN has been realized in room temperature, 0.1 M KOH solutions. PECetching of GaN was achieved by applying a positive bias to the surface of the p-GaN layer through a deposited titanium mask. The applied bias reduces the field at the semiconductor surface, which induced the dissolution of the GaN. The effect of bias on etch rate and morphology was examined. It was found that insulating the Ti mask from the KOH solution with Si3N4 significantly increases the etch rate. The rms roughness of the etched region decreased as the bias voltage increased. Etch rates as high as 4.4 nm/min were recorded for films etched at 2 V
    corecore