151 research outputs found
Influence of asymmetry and nodal planes on high-harmonic generation in heteronuclear molecules
The relation between high-harmonic spectra and the geometry of the molecular
orbitals in position and momentum space is investigated. In particular we
choose two isoelectronic pairs of homonuclear and heteronuclear molecules, such
that the highest occupied molecular orbital of the former exhibit at least one
nodal plane. The imprint of such planes is a strong suppression in the harmonic
spectra, for particular alignment angles. We are able to identify two distinct
types of nodal planes. If the nodal planes are determined by the atomic
wavefunctions only, the angle for which the yield is suppressed will remain the
same for both types of molecules. In contrast, if they are determined by the
linear combination of atomic orbitals at different centers in the molecule,
there will be a shift in the angle at which the suppression occurs for the
heteronuclear molecules, with regard to their homonuclear counterpart. This
shows that, in principle, molecular imaging, which uses the homonuclear
molecule as a reference and enables one to observe the wavefunction distortions
in its heteronuclear counterpart, is possible.Comment: 14 pages, 7 figures. Figs. 3, 5 and 6 have been simplified in order
to comply with the arXiv size requirement
Excitation, two-center interference and the orbital geometry in laser-induced nonsequential double ionization of diatomic molecules
We address the influence of the molecular orbital geometry and of the
molecular alignment with respect to the laser-field polarization on
laser-induced nonsequential double ionization of diatomic molecules for
different molecular species, namely and . We
focus on the recollision excitation with subsequent tunneling ionization (RESI)
mechanism, in which the first electron, upon return, promotes the second
electron to an excited state, from where it subsequently tunnels. We show that
the electron-momentum distributions exhibit interference maxima and minima due
to the electron emission at spatially separated centers. We provide generalized
analytical expressions for such maxima or minima, which take into account
mixing and the orbital geometry. The patterns caused by the two-center
interference are sharpest for vanishing alignment angle and get washed out as
this parameter increases. Apart from that, there exist features due to the
geometry of the lowest occupied molecular orbital (LUMO), which may be observed
for a wide range of alignment angles. Such features manifest themselves as the
suppression of probability density in specific momentum regions due to the
shape of the LUMO wavefunction, or as an overall decrease in the RESI yield due
to the presence of nodal planes.Comment: 11 pages revtex, 2 figure
Local dynamics in high-order harmonic generation using Bohmian trajectories
We investigate high-order harmonic generation from a Bohmian-mechanical
perspective, and find that the innermost part of the core, represented by a
single Bohmian trajectory, leads to the main contributions to the high-harmonic
spectra. Using time-frequency analysis, we associate this central Bohmian
trajectory to an ensemble of unbound classical trajectories leaving and
returning to the core, in agreement with the three step model. In the Bohmian
scenario, this physical picture builds up non-locally near the core via the
quantum mechanical phase of the wavefunction. This implies that the flow of the
wavefunction far from the core alters the central Bohmian trajectory. We also
show how this phase degrades in time for the peripheral Bohmian trajectories as
they leave the core region.Comment: 7 pages, 3 figures; the manuscript has been considerably extended and
modified with regard to the previous version
High-harmonic generation from a confined atom
The order of high harmonics emitted by an atom in an intense laser field is
limited by the so-called cutoff frequency. Solving the time-dependent
Schr\"odinger equation, we show that this frequency can be increased
considerably by a parabolic confining potential, if the confinement parameters
are suitably chosen.
Furthermore, due to confinement, the radiation intensity remains high
throughout the extended emission range. All features observed can be explained
with classical arguments.Comment: 4 pages(tex files), 4 figures(eps files); added references and
comment
Enhancement of bichromatic high-harmonic generation with a high-frequency field
Using a high-frequency field superposed to a linearly polarized bichromatic
laser field composed by a wave with frequency and a wave with
frequency , we show it is possible to enhance the intensity of a
group of high harmonics in orders of magnitude. These harmonics have
frequencies about 30% higher than the monochromatic-cutoff frequency, and,
within the three-step-model framework, correspond to a set of electron
trajectories for which tunneling ionization is strongly suppressed. Particular
features in the observed enhancement suggest that the high-frequency field
provides an additional mechanism for the electron to reach the continuum. This
interpretation is supported by a time-frequency analysis of the harmonic yield.
The additional high frequency field permits the control of this group of
harmonics leaving all other sets of harmonics practically unchanged, which is
an advantage over schemes involving only bichromatic fields.Comment: 6 pages RevTex, 5 figures (ps files), Changes in text, figures,
references and equations include
Nonsequential Double Ionization with Polarization-gated Pulses
We investigate laser-induced nonsequential double ionization by a
polarization-gated laser pulse, constructed employing two counter-rotating
circularly polarized few cycle pulses with a time delay . We address the
problem within a classical framework, and mimic the behavior of the
quantum-mechanical electronic wave packet by means of an ensemble of classical
electron trajectories. These trajectories are initially weighted with the
quasi-static tunneling rate, and with suitably chosen distributions for the
momentum components parallel and perpendicular to the laser-field polarization,
in the temporal region for which it is nearly linearly polarized. We show that,
if the time delay is of the order of the pulse length, the
electron-momentum distributions, as functions of the parallel momentum
components, are highly asymmetric and dependent on the carrier-envelope (CE)
phase. As this delay is decreased, this asymmetry gradually vanishes. We
explain this behavior in terms of the available phase space, the quasi-static
tunneling rate and the recollision rate for the first electron, for different
sets of trajectories. Our results show that polarization-gating technique may
provide an efficient way to study the NSDI dynamics in the single-cycle limit,
without employing few-cycle pulses.Comment: 17 pages, 6 figure
Classical and quantum-mechanical treatments of nonsequential double ionization with few-cycle laser pulses
We address nonsequential double ionization induced by strong, linearly
polarized laser fields of only a few cycles, considering a physical mechanism
in which the second electron is dislodged by the inelastic collision of the
first electron with its parent ion. The problem is treated classically, using
an ensemble model, and quantum-mechanically, within the strong-field and
uniform saddle-point approximations. In the latter case, the results are
interpreted in terms of "quantum orbits", which can be related to the
trajectories of a classical electron in an electric field. We obtain highly
asymmetric electron momentum distributions, which strongly depend on the
absolute phase, i.e., on the phase difference between the pulse envelope and
its carrier frequency. Around a particular value of this parameter, the
distributions shift from the region of positive to that of negative momenta, or
vice-versa, in a radical fashion. This behavior is investigated in detail for
several driving-field parameters, and provides a very efficient method for
measuring the absolute phase. Both models yield very similar distributions,
which share the same physical explanation. There exist, however, minor
discrepancies due to the fact that, beyond the region for which electron-impact
ionization is classically allowed, the yields from the quantum mechanical
computation decay exponentially, whereas their classical counterparts vanish.Comment: 12 pages revtex, 12 figures (eps files
- …