571 research outputs found
Simulated breath waveform control
Subsystem was developed which provides twelve waveform controls to breath drive mechanism. Twelve position, magnetically actuated rotary switch is connected to one end of crankshaft drive, such that it makes one complete revolution for each simulated breath. Connections with common wired point are included in modifications made to standard motor speed controller
Drive mechanism for production of simulated human breath
Simulated breath drive mechanism was developed as subsystem to breathing metabolic simulator. Mechanism reproduces complete range of human breath rate, breath depth, and breath waveform, as well as independently controlled functional residual capacity. Mechanism was found capable of simulating various individual human breathing characteristics without any changes of parts
Breathing-metabolic simulator
Breathing-metabolic simulator was developed to be used for evaluation of life support equipment. Apparatus simulates human breathing rate and controls temperature and humidity of exhaled air as well as its chemical composition. All functions are designed to correspond to various degrees of human response
Atomic oxygen studies on polymers
The purpose was to study the effects of atomic oxygen on the erosion of polymer based materials. The development of an atomic oxygen neutral beam facility using a SURFATRON surface wave launcher that can produce beam energies between 2 and 3 eV at flux levels as high as approx. 10 to the 17th power atoms/cm (2)-sec is described. Thin film dielectric materials were studied to determine recession rates and and reaction efficiencies as a function of incident beam energy and fluence. Accelerated testing was also accomplished and the values of reaction efficiency compared to available space flight data. Electron microscope photomicrographs of the samples' surface morphology were compared to flight test specimens
Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL)
The sole instrument on the upcoming ICESat-2 altimetry mission is a micropulse lidar that measures the time-of-flight of individual photons from laser pulses transmitted at 532 nm. Prior to launch, MABEL serves as an airborne implementation for testing and development. In this paper, we provide a first examination of MABEL data acquired on two flights over sea ice in April 2012: one north of the Arctic coast of Greenland, and the other in the East Greenland Sea.We investigate the phenomenology of photon distributions in the sea ice returns. An approach to locate the surface and estimate its elevation in the distributions is described, and its achievable precision assessed. Retrieved surface elevations over relatively flat leads in the ice cover suggest that precisions of several centimeters are attainable. Restricting the width of the elevation window used in the surface analysis can mitigate potential biases in the elevation estimates due to subsurface returns at 532 nm. Comparisons of nearly coincident elevation profiles from MABEL with those acquired by an analog lidar show good agreement.Discrimination of ice and open water, a crucial step in the determination of sea ice free board and the estimation of ice thickness, is facilitated by contrasts in the observed signal background photon statistics. Future flight lines will sample a broader range of seasonal ice conditions for further evaluation of the year-round profiling capabilities and limitations of the MABEL instrument
Recommended from our members
Effects of urban density on carbon dioxide exchanges: observations of dense urban, suburban and woodland areas of southern England
Anthropogenic and biogenic controls on the surface–atmosphere exchange of CO2 are explored for three different environments. Similarities are seen between suburban and woodland sites during summer, when photosynthesis and respiration determine the diurnal pattern of the CO2 flux. In winter, emissions from human activities dominate urban and suburban fluxes; building emissions increase during cold weather, while traffic is a major component of CO2 emissions all year round. Observed CO2 fluxes reflect diurnal traffic patterns (busy throughout the day (urban); rush-hour peaks (suburban)) and vary between working days and non-working days, except at the woodland site. Suburban vegetation offsets some anthropogenic emissions, but 24-h CO2 fluxes are usually positive even during summer. Observations are compared to estimated emissions from simple models and inventories. Annual CO2 exchanges are significantly different between sites, demonstrating the impacts of increasing urban density (and decreasing vegetation fraction) on the CO2 flux to the atmosphere
The Characterisation of Three Types of Genes that Overlie Copy Number Variable Regions
Background: Due to the increased accuracy of Copy Number Variable region (CNV) break point mapping, it is now possible to say with a reasonable degree of confidence whether a gene (i) falls entirely within a CNV; (ii) overlaps the CNV or (iii) actually contains the CNV. We classify these as type I, II and III CNV genes respectively. Principal Findings: Here we show that although type I genes vary in copy number along with the CNV, most of these type I genes have the same expression levels as wild type copy numbers of the gene. These genes must, therefore, be under homeostatic dosage compensation control. Looking into possible mechanisms for the regulation of gene expression we found that type I genes have a significant paucity of genes regulated by miRNAs and are not significantly enriched for monoallelically expressed genes. Type III genes, on the other hand, have a significant excess of genes regulated by miRNAs and are enriched for genes that are monoallelically expressed. Significance: Many diseases and genomic disorders are associated with CNVs so a better understanding of the different ways genes are associated with normal CNVs will help focus on candidate genes in genome wide association studies
Detecting parent of origin and dominant QTL in a two-generation commercial poultry pedigree using variance component methodology
<p>Abstract</p> <p>Introduction</p> <p>Variance component QTL methodology was used to analyse three candidate regions on chicken chromosomes 1, 4 and 5 for dominant and parent-of-origin QTL effects. Data were available for bodyweight and conformation score measured at 40 days from a two-generation commercial broiler dam line. One hundred dams were nested in 46 sires with phenotypes and genotypes on 2708 offspring. Linear models were constructed to simultaneously estimate fixed, polygenic and QTL effects. Different genetic models were compared using likelihood ratio test statistics derived from the comparison of full with reduced or null models. Empirical thresholds were derived by permutation analysis.</p> <p>Results</p> <p>Dominant QTL were found for bodyweight on chicken chromosome 4 and for bodyweight and conformation score on chicken chromosome 5. Suggestive evidence for a maternally expressed QTL for bodyweight and conformation score was found on chromosome 1 in a region corresponding to orthologous imprinted regions in the human and mouse.</p> <p>Conclusion</p> <p>Initial results suggest that variance component analysis can be applied within commercial populations for the direct detection of segregating dominant and parent of origin effects.</p
Photoactivatable prodrugs of antimelanoma agent Vemurafenib
In this study, we report on novel
photoactivatable caged prodrugs
of vemurafenib. This kinase inhibitor was the first approved drug
for the personalized treatment of BRAF-mutated melanoma and showed
impressive results in clinical studies. However, the occurrence of
severe side effects and drug resistance illustrates the urgent need
for innovative therapeutic approaches. To conquer these limitations,
we implemented photoremovable protecting groups into vemurafenib.
In general, this caging concept provides spatial and temporal control
over the activation of molecules triggered by ultraviolet light. Thus,
higher inhibitor concentrations in tumor tissues might be reached
with less systemic effects. Our study describes the first development
of caged vemurafenib prodrugs useful as pharmacological tools. We
investigated their photochemical characteristics and photoactivation. <i>In vitro</i> evaluation proved the intended loss-of-function
and the light-dependent recovery of efficacy in kinase and cellular
assays. The reported vemurafenib photo prodrugs represent a powerful
biological tool for novel pharmacological approaches in cancer research
Variable effect of co-infection on the HIV infectivity: Within-host dynamics and epidemiological significance
<p>Abstract</p> <p>Background</p> <p>Recent studies have implicated viral characteristics in accounting for the variation in the HIV set-point viral load (spVL) observed among individuals. These studies have suggested that the spVL might be a heritable factor. The spVL, however, is not in an absolute equilibrium state; it is frequently perturbed by immune activations generated by co-infections, resulting in a significant amplification of the HIV viral load (VL). Here, we postulated that if the HIV replication capacity were an important determinant of the spVL, it would also determine the effect of co-infection on the VL. Then, we hypothesized that viral factors contribute to the variation of the effect of co-infection and introduce variation among individuals.</p> <p>Methods</p> <p>We developed a within-host deterministic differential equation model to describe the dynamics of HIV and malaria infections, and evaluated the effect of variations in the viral replicative capacity on the VL burden generated by co-infection. These variations were then evaluated at population level by implementing a between-host model in which the relationship between VL and the probability of HIV transmission per sexual contact was used as the within-host and between-host interface.</p> <p>Results</p> <p>Our within-host results indicated that the combination of parameters generating low spVL were unable to produce a substantial increase in the VL in response to co-infection. Conversely, larger spVL were associated with substantially larger increments in the VL. In accordance, the between-host model indicated that co-infection had a negligible impact in populations where the virus had low replicative capacity, reflected in low spVL. Similarly, the impact of co-infection increased as the spVL of the population increased.</p> <p>Conclusion</p> <p>Our results indicated that variations in the viral replicative capacity would influence the effect of co-infection on the VL. Therefore, viral factors could play an important role driving several virus-related processes such as the increment of the VL induced by co-infections. These results raise the possibility that biological differences could alter the effect of co-infection and underscore the importance of identifying these factors for the implementation of control interventions focused on co-infection.</p
- …